A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern

被引:8
|
作者
Sri Preethaa, K. R. [1 ,2 ]
Muthuramalingam, Akila [1 ]
Natarajan, Yuvaraj [1 ,2 ]
Wadhwa, Gitanjali [1 ]
Ali, Ahmed Abdi Yusuf [3 ]
机构
[1] KPR Inst Engn & Technol, Dept Comp Sci & Engn, Coimbatore 641407, India
[2] Kyungpook Natl Univ, Dept Robot & Smart Syst Engn, 80 Daehak Ro, Daegu 41566, South Korea
[3] Univ Johannesburg, Dept Elect & Elect Engn, ZA-2092 Johannesburg, South Africa
基金
英国科研创新办公室;
关键词
wind pattern forecasting; machine learning; ensemble learning; deep learning hybrid model; ECHO STATE NETWORK; LONG-TERM WIND; SPEED; MODEL; DECOMPOSITION; PREDICTION; ENSEMBLE; LSTM;
D O I
10.3390/su151712914
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The wind is a crucial factor in various domains such as weather forecasting, the wind power industry, agriculture, structural health monitoring, and so on. The variability and unpredictable nature of the wind is a challenge faced by most wind-energy-based sectors. Several atmospheric and geographical factors influence wind characteristics. Many wind forecasting methods and tools have been introduced since early times. Wind forecasting can be carried out short-, medium-, and long-term. The uncertainty factors of the wind challenge the accuracy of techniques. This article brings the general background of physical, statistical, and intelligent approaches and their methods used to predict wind characteristics and their challenges-this work's objective is to improve effective data-driven models for forecasting wind-power production. The investigation and listing of the effectiveness of improved machine learning models to estimate univariate wind-energy time-based data is crucially the prominent focus of this work. The performance of various ML predicting models was examined using ensemble learning (ES) models, such as boosted trees and bagged trees, Support Vector Regression (SVR) with distinctive kernels etc. Numerous neural networks have recently been constructed for forecasting wind speed and power due to artificial intelligence (AI) advancement. Based on the model summary, further directions for research and application developments can be planned.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction
    T. Idhaya
    A. Suruliandi
    S. P. Raja
    The Protein Journal, 2024, 43 : 171 - 186
  • [32] Stock Market Forecasting with Different Input Indicators using Machine Learning and Deep Learning Techniques: A Review
    Verma, Satya
    Sahu, Satya Prakash
    Sahu, Tirath Prasad
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [33] Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review
    de Lima, Clarisse Lins
    da Silva, Ana Clara Gomes
    Moreno, Giselle Machado Magalhaes
    da Silva, Cecilia Cordeiro
    Musah, Anwar
    Aldosery, Aisha
    Dutra, Livia
    Ambrizzi, Tercio
    Borges, Iuri V. G.
    Tunali, Merve
    Basibuyuk, Selma
    Yenigun, Orhan
    Massoni, Tiago Lima
    Browning, Ella
    Jones, Kate
    Campos, Luiza
    Kostkova, Patty
    da Silva Filho, Abel Guilhermino
    dos Santos, Wellington Pinheiro
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [34] A Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context
    Dimd, Berhane Darsene
    Voller, Steve
    Cali, Umit
    Midtgard, Ole-Morten
    IEEE ACCESS, 2022, 10 : 26404 - 26425
  • [35] Machine learning techniques applied to solar flares forecasting
    Ribeiro, F.
    Gradvohl, A. L. S.
    ASTRONOMY AND COMPUTING, 2021, 35
  • [36] Review of machine learning techniques for optimal power flow
    Khaloie, Hooman
    Dolanyi, Mihaly
    Toubeau, Jean-Francois
    Vallee, Francois
    APPLIED ENERGY, 2025, 388
  • [37] Heating and Cooling Loads Forecasting for Residential Buildings Based on Hybrid Machine Learning Applications: A Comprehensive Review and Comparative Analysis
    Moradzadeh, Arash
    Mohammadi-Ivatloo, Behnam
    Abapour, Mehdi
    Anvari-Moghaddam, Amjad
    Roy, Sanjiban Sekhar
    IEEE ACCESS, 2022, 10 : 2196 - 2215
  • [38] A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting
    Khan, Junaid
    Lee, Eunkyu
    Balobaid, Awatef Salem
    Kim, Kyungsup
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [39] Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks
    Mora, Elianne
    Cifuentes, Jenny
    Marulanda, Geovanny
    ENERGIES, 2021, 14 (23)
  • [40] An approach to portfolio optimization with time series forecasting algorithms and machine learning techniques
    Behera, Jyotirmayee
    Kumar, Pankaj
    APPLIED SOFT COMPUTING, 2025, 170