Improved bacterial foraging optimization with deep learning based anomaly detection in smart cities

被引:9
|
作者
Khayyat, Manal M. [1 ]
机构
[1] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Informat Syst, Mecca, Saudi Arabia
关键词
Internet of Things; Anomaly detection; Optimization; Deep learning; Bayesian optimization; Improved Bacterial Foraging;
D O I
10.1016/j.aej.2023.05.082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Internet of Things (IoT) contains many smart devices that collect, store, communicate, and process data. IoT implementation has performed novel opportunities in industries, environments, businesses, and homes. Anomaly detection (AD) is helpful in IoT platforms that can recognize and prevent potential system failures, decrease downtime, enhance the quality of products and services, and improve overall operational efficacy. AD systems for IoT data contain statistical modelling, deep learning (DL), and machine learning (ML) approaches which detect patterns and anomalies in the data. This article introduces an Improved Bacterial Foraging Optimization with optimum deep learning for Anomaly Detection (IBFO-ODLAD) in the IoT network. The presented IBFO-ODLAD technique performs data normalization using Z-score normalization approach. For the feature selection process, the IBFO-ODLAD technique designs the IBFO algorithm to choose an optimal subset of features. In addition, the IBFO-ODLAD technique uses multiplicative long short term memory (MLSTM) model for intrusion detection and classification process. Furthermore, the Bayesian optimization algorithm (BOA) was executed for the optimum hyperparameter selection of the MLSTM model. The experimental outcome of the IBFO-ODLAD method was validated on the UNSW NB-15 dataset and UCI SECOM dataset. The experimental outcomes signified the improved performance of the IBFO-ODLAD algorithm with maximum accuracy of 98.89 % and 98.66 % validated on the UNSW NB-15 dataset and UCI SECOM dataset respectively.& COPY; 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:407 / 417
页数:11
相关论文
共 50 条
  • [31] Deep Anomaly Detection with Ensemble-Based Active Learning
    Tang, Xuning
    Astle, Yihua Shi
    Freeman, Craig
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1663 - 1670
  • [32] UDTL: Anomaly Detection Based on Unsupervised Deep Transfer Learning
    Wang, Xiang
    Wang, Yuanyu
    Dai, Yu
    Wei, Chi
    Tang, Yuliang
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2650 - 2655
  • [33] Network traffic anomaly detection based on deep learning: a review
    Zhang, Wenjing
    Lei, Xuemei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (03) : 249 - 257
  • [34] Survey of Deep Learning Based Graph Anomaly Detection Methods
    Chen B.
    Li J.
    Lu X.
    Sha C.
    Wang X.
    Zhang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (07): : 1436 - 1455
  • [35] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [36] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [37] Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation
    Akagic, Amila
    Dzafic, Izudin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [38] Deep Learning-Driven Anomaly Detection for Green IoT Edge Networks
    Bushehri, Ahmad Shahnejat
    Amirnia, Ashkan
    Belkhiri, Adel
    Keivanpour, Samira
    de Magalhaes, Felipe Gohring
    Nicolescu, Gabriela
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (01): : 498 - 513
  • [39] River Flooding Forecasting and Anomaly Detection Based on Deep Learning
    Miau, Scott
    Hung, Wei-Hsi
    IEEE ACCESS, 2020, 8 : 198384 - 198402
  • [40] High-ratio distributed photovoltaic anomaly detection based on improved deep learning
    Gu, Yu
    Shi, Jingning
    Yu, Zhiyuan
    Bao, Meiling
    Liang, Hongjie
    Wang, Liang
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 555 - 559