Two-photon Voltage Imaging Denoising by Self-supervised Learning

被引:1
作者
Liu, Chang [1 ,2 ]
Platisa, Jelena [3 ,4 ,5 ]
Ye, Xin [2 ,6 ]
Ahrens, Allison M. [7 ]
Chen, Ichun Anderson [6 ]
Davison, Ian G. [6 ,7 ,8 ]
Pieribone, Vincent A. [3 ,4 ,5 ]
Chen, Jerry L. [2 ,6 ,7 ,8 ]
Tian, Lei [1 ,2 ,6 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Yale Univ, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[4] Yale Univ, Dept Neurosci, New Haven, CT 06520 USA
[5] John B Pierce Lab, New Haven, CT 06520 USA
[6] Boston Univ, Ctr Neurophoton, Boston, MA 02215 USA
[7] Boston Univ, Dept Biol, Boston, MA 02215 USA
[8] Boston Univ, Ctr Syst Neurosci, Boston, MA 02215 USA
来源
NEURAL IMAGING AND SENSING 2023 | 2023年 / 12365卷
关键词
denoising; voltage imaging; self-supervised learning; two photon; deep learning; high speed; large field of view; low light;
D O I
10.1117/12.2648122
中图分类号
TH742 [显微镜];
学科分类号
摘要
High-speed low-light two-photon voltage imaging is an emerging tool to simultaneously monitor neuronal activity from a large number of neurons. However, shot noise dominates pixel-wise measurements and the neuronal signals are difficult to be identified in the single-frame raw measurement. We developed a self-supervised deep learning framework for voltage imaging denoising, DeepVID, without the need for any high-SNR measurements. DeepVID infers the underlying fluorescence signal based on independent temporal and spatial statistics of the measurement that is attributable to shot noise. DeepVID achieved a 15-fold improvement in SNR when comparing denoised and raw image data.
引用
收藏
页数:2
相关论文
共 4 条
  • [1] Noise2Void-Learning Denoising from Single Noisy Images
    Krull, Alexander
    Buchholz, Tim-Oliver
    Jug, Florian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2124 - 2132
  • [2] Removing independent noise in systems neuroscience data using DeepInterpolation
    Lecoq, Jerome
    Oliver, Michael
    Siegle, Joshua H.
    Orlova, Natalia
    Ledochowitsch, Peter
    Koch, Christof
    [J]. NATURE METHODS, 2021, 18 (11) : 1401 - +
  • [3] Platisa J., 2021, BIORXIV
  • [4] Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
    Zhang, Kai
    Zuo, Wangmeng
    Chen, Yunjin
    Meng, Deyu
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3142 - 3155