Fabrication of Si/N-doped carbon nanotube composite via spray drying followed by catalytic chemical vapor deposition

被引:10
作者
Kim, Hyemin [1 ,2 ]
Shin, Seongmin [1 ,3 ]
Jung, Dae Soo [1 ]
Kim, Jung Hyun [1 ]
机构
[1] Korea Inst Ceram Engn & Technol KICET, Emerging Mat R&D Div, 101 Soho Ro, Jinju Si 52581, Gyeongsangnam D, South Korea
[2] Helmholtz Zentrum Hereon, Inst Surface Sci, D-21502 Geesthacht, Germany
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
关键词
Spray drying process; Silicon-carbon composite; Nitrogen -doped carbon nanotube; Catalytic chemical vapor deposition; Electrically conductive buffer; HIGH TAP-DENSITY; ANODE MATERIALS; SILICON ANODE; LITHIUM; PERFORMANCE; GRAPHENE; GRAPHITE; SHELL; NANOPARTICLES; MICROSPHERES;
D O I
10.1016/j.jallcom.2023.168743
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing an effective structure for the silicon-carbon composite that promotes electric-ionic conductivity and reduces the volume change is a key issue for Si-based anode. In this study, spherical granules comprising silicon nanoparticles (Si-NPs) grafted with nitrogen-doped carbon nanotubes (Si-NCNTs) are fabricated via spray drying followed by catalytic chemical vapor deposition (CCVD). The initial discharge and charge capacities of the Si-NCNTs are 2457 and 1820 mA h g-1, respectively. The Si-NCNTs shows a capacity retention of 57% after 200 cycles as well as improved rate capability when compared to the Si-NPs and commercial CNTs composites (Si-CNTs) fabricated via spray drying alone. The Li+ ion-diffusion-coefficient (DLi+) of the Si-NCNTs is approximately similar to three times larger than that of the Si-CNTs at critical lithiation potential. The NCNTs that form the interconnections between Si-NPs play the role of electrically conductive buffers that could accommodate the volume change produced and favor Li+ ion transport.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 59 条
[31]   Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching [J].
Nzabahimana, Joseph ;
Liu, Zhifang ;
Guo, Songtao ;
Wang, Libin ;
Hu, Xianluo .
CHEMSUSCHEM, 2020, 13 (08) :1923-1946
[32]   Highly efficient hierarchical multiroom-structured molybdenum carbide/carbon composite microspheres grafted with nickel-nanoparticle-embedded nitrogen-doped carbon nanotubes as air electrode for lithium-oxygen batteries [J].
Oh, Yeon Jong ;
Kim, Jung Hyun ;
Park, Seung-Keun ;
Park, Jin-Sung ;
Lee, Jung-Kul ;
Kang, Yun Chan .
CHEMICAL ENGINEERING JOURNAL, 2018, 351 :886-896
[33]   Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries [J].
Pan, Qingrui ;
Zuo, Pengjian ;
Lou, Shuaifeng ;
Mu, Tiansheng ;
Du, Chunyu ;
Cheng, Xinqun ;
Ma, Yulin ;
Gao, Yunzhi ;
Yin, Geping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 723 :434-440
[34]   Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode [J].
Park, Byung Hoon ;
Jeong, Jun Hui ;
Lee, Geon-Woo ;
Kim, Young-Hwan ;
Roh, Kwang Chul ;
Kim, Kwang-Bum .
JOURNAL OF POWER SOURCES, 2018, 394 :94-101
[35]   Amorphous Cobalt Selenite Nanoparticles Decorated on a Graphitic Carbon Hollow Shell for High-Rate and Ultralong Cycle Life Lithium-Ion Batteries [J].
Park, Gi Dae ;
Kang, Yun Chan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (48) :17707-17717
[36]   Electrode Degradation in Lithium-Ion Batteries [J].
Pender, Joshua P. ;
Jha, Gaurav ;
Youn, Duck Hyun ;
Ziegler, Joshua M. ;
Andoni, Ilektra ;
Choi, Eric J. ;
Heller, Adam ;
Dunn, Bruce S. ;
Weiss, Paul S. ;
Penner, Reginald M. ;
Mullins, C. Buddie .
ACS NANO, 2020, 14 (02) :1243-1295
[37]   A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors [J].
Peng, Xinwen ;
Wu, Kunze ;
Hu, Yijie ;
Zhuo, Hao ;
Chen, Zehong ;
Jing, Shuangshuang ;
Liu, Qingzhong ;
Liu, Chuanfu ;
Zhong, Linxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) :23550-23559
[38]   Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties [J].
Rabchinskii, Maxim K. ;
Ryzhkov, Sergei A. ;
Gudkov, Maksim, V ;
Baidakova, Marina, V ;
Saveliev, Svyatoslav D. ;
Pavlov, Sergei, I ;
Shnitov, Vladimir V. ;
Kirilenko, Demid A. ;
Stolyarova, Dina Yu ;
Lebedev, Aleksey M. ;
Chumakov, Ratibor G. ;
Brzhezinskaya, Maria ;
Shiyanova, Kseniya A. ;
Pavlov, Sergey, V ;
Kislenko, Vitaliy A. ;
Kislenko, Sergey A. ;
Makarova, Anna ;
Melnikov, Valery P. ;
Brunkov, Pavel N. .
2D MATERIALS, 2020, 7 (04)
[39]   Scalable Synthesis and Electrochemical Properties of Porous Si-CoSi2-C Composites as an Anode for Li-ion Batteries [J].
Seo, Hyungeun ;
Yang, Hae-Ri ;
Yang, Youngmo ;
Kim, Kyungbae ;
Kim, Sung Hyon ;
Lee, Hyunseung ;
Kim, Jae-Hun .
MATERIALS, 2021, 14 (18)
[40]   Research progress on silicon/carbon composite anode materials for lithium-ion battery [J].
Shen, Xiaohui ;
Tian, Zhanyuan ;
Fan, Ruijuan ;
Shao, Le ;
Zhang, Dapeng ;
Cao, Guolin ;
Kou, Liang ;
Bai, Yangzhi .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) :1067-1090