Fabrication of Si/N-doped carbon nanotube composite via spray drying followed by catalytic chemical vapor deposition

被引:10
作者
Kim, Hyemin [1 ,2 ]
Shin, Seongmin [1 ,3 ]
Jung, Dae Soo [1 ]
Kim, Jung Hyun [1 ]
机构
[1] Korea Inst Ceram Engn & Technol KICET, Emerging Mat R&D Div, 101 Soho Ro, Jinju Si 52581, Gyeongsangnam D, South Korea
[2] Helmholtz Zentrum Hereon, Inst Surface Sci, D-21502 Geesthacht, Germany
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
关键词
Spray drying process; Silicon-carbon composite; Nitrogen -doped carbon nanotube; Catalytic chemical vapor deposition; Electrically conductive buffer; HIGH TAP-DENSITY; ANODE MATERIALS; SILICON ANODE; LITHIUM; PERFORMANCE; GRAPHENE; GRAPHITE; SHELL; NANOPARTICLES; MICROSPHERES;
D O I
10.1016/j.jallcom.2023.168743
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing an effective structure for the silicon-carbon composite that promotes electric-ionic conductivity and reduces the volume change is a key issue for Si-based anode. In this study, spherical granules comprising silicon nanoparticles (Si-NPs) grafted with nitrogen-doped carbon nanotubes (Si-NCNTs) are fabricated via spray drying followed by catalytic chemical vapor deposition (CCVD). The initial discharge and charge capacities of the Si-NCNTs are 2457 and 1820 mA h g-1, respectively. The Si-NCNTs shows a capacity retention of 57% after 200 cycles as well as improved rate capability when compared to the Si-NPs and commercial CNTs composites (Si-CNTs) fabricated via spray drying alone. The Li+ ion-diffusion-coefficient (DLi+) of the Si-NCNTs is approximately similar to three times larger than that of the Si-CNTs at critical lithiation potential. The NCNTs that form the interconnections between Si-NPs play the role of electrically conductive buffers that could accommodate the volume change produced and favor Li+ ion transport.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Effects of Nitrogen Doping on X-band Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites [J].
Arjmand, Mohammad ;
Sundararaj, Uttandaraman .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (32) :17844-17850
[2]   Porous microspherical silicon composite anode material for lithium ion battery [J].
Bie, Yitian ;
Yu, Jinglu ;
Yang, Jun ;
Lu, Wei ;
Nuli, Yanna ;
Wang, Jiulin .
ELECTROCHIMICA ACTA, 2015, 178 :65-73
[3]   On the Ageing of High Energy Lithium-Ion BatteriesComprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes [J].
Capron, Odile ;
Gopalakrishnan, Rahul ;
Jaguemont, Joris ;
Van Den Bossche, Peter ;
Omar, Noshin ;
Van Mierlo, Joeri .
MATERIALS, 2018, 11 (02)
[4]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[5]   Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries [J].
Chen, Jiale ;
Guo, Xingmei ;
Gao, Mingyue ;
Wang, Jing ;
Sun, Shangqing ;
Xue, Kai ;
Zhang, Shuya ;
Liu, Yuanjun ;
Zhang, Junhao .
CHEMICAL COMMUNICATIONS, 2021, 57 (81) :10580-10583
[6]   Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Zhang, Feng ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (37) :15582-15589
[7]   Waste Windshield-Derived Silicon/Carbon Nanocomposites as High-Performance Lithium-Ion Battery Anodes [J].
Choi, Mingu ;
Kim, Jae-Chan ;
Kim, Dong-Wan .
SCIENTIFIC REPORTS, 2018, 8
[8]   Alloying Germanium Nanowire Anodes Dramatically Outperform Graphite Anodes in Full-Cell Chemistries over a Wide Temperature Range [J].
Collins, Gearoid A. ;
McNamara, Karrina ;
Kilian, Seamus ;
Geaney, Hugh ;
Ryan, Kevin M. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) :1793-1804
[9]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225
[10]   Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries [J].
Dou, Fei ;
Shi, Liyi ;
Chen, Guorong ;
Zhang, Dengsong .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) :149-198