A Cartesian FMM-accelerated Galerkin boundary integral Poisson-Boltzmann solver

被引:3
作者
Chen, Jiahui [1 ]
Tausch, Johannes [2 ]
Geng, Weihua [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
关键词
Fast multipole method; Electrostatic; Boundary integral; Poisson; -Boltzmann; Preconditioning; GMRES; FAST-MULTIPOLE-METHOD; MATCHED INTERFACE; ELEMENT SOLUTION; FINITE-ELEMENT; TREECODE; ELECTROSTATICS; EQUATION; VERSION; MACROMOLECULES; DECOMPOSITION;
D O I
10.1016/j.jcp.2023.111981
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Poisson-Boltzmann model is an effective and popular approach for modeling solvated biomolecules in continuum solvent with dissolved electrolytes. In this paper, we report our recent work in developing a Galerkin boundary integral method for solving the linear Poisson-Boltzmann (PB) equation. The solver has combined advantages in accuracy, efficiency, and memory usage as it applies a well-posed boundary integral formulation to circumvent many numerical difficulties associated with the PB equation and uses an O(N) Cartesian Fast Multipole Method (FMM) to accelerate the GMRES iteration. In addition, special numerical treatments such as adaptive FMM order, block diagonal preconditioners, Galerkin discretization, and Duffy's transformation are combined to improve the performance of the solver, which is validated on benchmark Kirkwood's sphere and a series of testing proteins.
引用
收藏
页数:19
相关论文
共 58 条
[1]   Progress in the prediction of pKa values in proteins [J].
Alexov, Emil ;
Mehler, Ernest L. ;
Baker, Nathan ;
Baptista, Antonio M. ;
Huang, Yong ;
Milletti, Francesca ;
Nielsen, Jens Erik ;
Farrell, Damien ;
Carstensen, Tommy ;
Olsson, Mats H. M. ;
Shen, Jana K. ;
Warwicker, Jim ;
Williams, Sarah ;
Word, J. Michael .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (12) :3260-3275
[2]   AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN-BASED MOLECULAR ELECTROSTATICS [J].
Bajaj, Chandrajit ;
Chen, Shun-Chuan ;
Rand, Alexander .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :826-848
[3]  
Baker NA, 2004, METHOD ENZYMOL, V383, P94
[4]   The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers [J].
Baker, NA ;
Sept, D ;
Holst, MJ ;
McCammon, JA .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (3-4) :427-438
[5]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[6]  
Beard DA, 2001, BIOPOLYMERS, V58, P106, DOI 10.1002/1097-0282(200101)58:1<106::AID-BIP100>3.0.CO
[7]  
2-#
[8]   Fast boundary element method for the linear Poisson-Boltzmann equation [J].
Boschitsch, AH ;
Fenley, MO ;
Zhou, HX .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2741-2754
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   On removal of charge singularity in Poisson-Boltzmann equation [J].
Cai, Qin ;
Wang, Jun ;
Zhao, Hong-Kai ;
Luo, Ray .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (14)