Crop Type Prediction: A Statistical and Machine Learning Approach

被引:9
|
作者
Bhuyan, Bikram Pratim [1 ,2 ]
Tomar, Ravi [3 ]
Singh, T. P. [1 ]
Cherif, Amar Ramdane [2 ]
机构
[1] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun 248006, India
[2] Univ Paris Saclay, LISV Lab, 10-12 Ave Europe, F-78140 Velizy Villacoublay, France
[3] Persistent Syst, Pune 411016, India
关键词
crop prediction; machine learning; artificial intelligence; statistical analysis; sustainable agriculture; AGRICULTURE; KNOWLEDGE;
D O I
10.3390/su15010481
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Farmers' ability to accurately anticipate crop type is critical to global food production and sustainable smart cities since timely decisions on imports and exports, based on precise forecasts, are crucial to the country's food security. In India, agriculture and allied sectors constitute the country's primary source of revenue. Seventy percent of the country's rural residents are small or marginal agriculture producers. Cereal crops such as rice, wheat, and other pulses make up the bulk of India's food supply. Regarding cultivation, climate and soil conditions play a vital role. Information is of utmost need in predicting which crop is best suited given the soil and climate. This paper provides a statistical look at the features and indicates the best crop type on the given features in an Indian smart city context. Machine learning algorithms like k-NN, SVM, RF, and GB trees are examined for crop-type prediction. Building an accurate crop forecast system required high accuracy, and the GB tree technique provided that. It outperforms all the classification algorithms with an accuracy of 99.11% and an F1-score of 99.20%.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [2] Statistical and machine learning methods for crop yield prediction in the context of precision agriculture
    Hannah Burdett
    Christopher Wellen
    Precision Agriculture, 2022, 23 : 1553 - 1574
  • [3] Analysis of agricultural crop yield prediction using statistical techniques of machine learning
    Pant, Janmejay
    Pant, R. P.
    Singh, Manoj Kumar
    Singh, Devesh Pratap
    Pant, Himanshu
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10922 - 10926
  • [4] Statistical and machine learning methods for crop yield prediction in the context of precision agriculture
    Burdett, Hannah
    Wellen, Christopher
    PRECISION AGRICULTURE, 2022, 23 (05) : 1553 - 1574
  • [5] An Integrated Statistical-Machine Learning Approach for Runoff Prediction
    Singh, Abhinav Kumar
    Kumar, Pankaj
    Ali, Rawshan
    Al-Ansari, Nadhir
    Vishwakarma, Dinesh Kumar
    Kushwaha, Kuldeep Singh
    Panda, Kanhu Charan
    Sagar, Atish
    Mirzania, Ehsan
    Elbeltagi, Ahmed
    Kuriqi, Alban
    Heddam, Salim
    SUSTAINABILITY, 2022, 14 (13)
  • [6] Statistical Prediction and Machine Learning
    Govind, Sabeen
    Chen, John Tuhao
    Chen, Lincy Y.
    Lee, Clement
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2025,
  • [7] Statistical Prediction and Machine Learning
    Jogo, Fransiskus Serfian
    TECHNOMETRICS, 2025, 67 (01) : 184 - 185
  • [8] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Das, Utpol Kanti
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2024, 12 : 173583 - 173598
  • [9] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Das, Utpol Kanti
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2024, 12 : 173583 - 173598
  • [10] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Kanti Das, Utpol
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE Access, 2024, 12 : 173583 - 173598