Full-length transcriptome reveals the pivotal role of ABA and ethylene in the cold stress response of Tetrastigma hemsleyanum

被引:2
|
作者
Qian, Lihua [1 ]
Yin, Shuya [1 ]
Lu, Na [2 ]
Yue, Erkui [3 ]
Yan, Jianli [1 ]
机构
[1] Hangzhou Acad Agr Sci, Inst Biotechnol, Hangzhou, Peoples R China
[2] Hangzhou Acad Agr Sci, Inst Vegetable, Hangzhou, Peoples R China
[3] Hangzhou Acad Agr Sci, Inst Crop Sci & Ecol, Hangzhou, Peoples R China
来源
关键词
Tetrastigma hemsleyanum; full-length transcriptome; cold stress; ABA; ethylene; TOLERANCE;
D O I
10.3389/fpls.2024.1285879
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tetrastigma hemsleyanum is a valuable herb widely used in Chinese traditional and modern medicine. Winter cold severely limits the artificial cultivation of this plant, but the physiological and molecular mechanisms upon exposure to cold stress in T. hemsleyanum are unclear. T. hemsleyanum plants with different geographical origins exhibit large differences in response to cold stress. In this research study, using T. hemsleyanum ecotypes that exhibit frost tolerance (FR) and frost sensitivity (FS), we analyzed the response of cottage seedlings to a simulated frost treatment; plant hormones were induced with both short (2 h) and long (9 h) frost treatments, which were used to construct the full-length transcriptome and obtained 76,750 transcripts with all transcripts mapped to 28,805 genes, and 27,215 genes, respectively, annotated to databases. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed enrichment in plant hormone signaling pathways. Further analysis shows that differently expressed genes (DEGs) concentrated on calcium signaling, ABA biosynthesis and signal transduction, and ethylene in response to cold stress. We also found that endogenous ABA and ethylene content were increased after cold treatment, and exogenous ABA and ethylene significantly improved cold tolerance in both ecotypes. Our results elucidated the pivotal role of ABA and ethylene in response to cold stress in T. hemsleyanum and identified key genes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress
    Xin Peng
    Hao Wu
    Hongjiang Chen
    Yujiong Zhang
    Dan Qiu
    Zhongyi Zhang
    BMC Genomics, 20
  • [2] Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress
    Peng, Xin
    Wu, Hao
    Chen, Hongjiang
    Zhang, Yujiong
    Qiu, Dan
    Zhang, Zhongyi
    BMC GENOMICS, 2019, 20 (01)
  • [3] Full-Length Transcriptome Sequencing Reveals the Impact of Cold Stress on Alternative Splicing in Quinoa
    Zheng, Ling
    Zhao, Yiwu
    Gan, Yifeng
    Li, Hao
    Luo, Shiqi
    Liu, Xiang
    Li, Yuanyuan
    Shao, Qun
    Zhang, Hui
    Zhao, Yanxiu
    Ma, Changle
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [4] PacBio Full-Length Transcriptome Sequencing Reveals the Mechanism of Salt Stress Response in Sonneratia apetala
    Chen, Beibei
    Liu, Tingting
    Yang, Zhuanying
    Yang, Shaoxia
    Chen, Jinhui
    PLANTS-BASEL, 2023, 12 (22):
  • [5] Integrated Full-Length Transcriptome and Metabolome Profiling Reveals Flavonoid Regulation in Response to Freezing Stress in Potato
    Zhu, Zhiguo
    Wei, Lingling
    Guo, Lei
    Bao, Huihui
    Wang, Xuemei
    Kear, Philip
    Wang, Zhen
    Zhu, Guangtao
    PLANTS-BASEL, 2023, 12 (10):
  • [6] Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage
    Li Xuhui
    Chen Weiwei
    Lu Siqi
    Fang Junteng
    Zhu Hang
    Zhang Xiangbo
    Qi Yongwen
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [7] Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage
    Li Xuhui
    Chen Weiwei
    Lu Siqi
    Fang Junteng
    Zhu Hang
    Zhang Xiangbo
    Qi Yongwen
    BMC Plant Biology, 22
  • [8] Full-Length Transcriptome of Camellia japonica (Naidong) Reveals Molecular Characteristics in Drought Stress
    Zhou, Rui
    Wang, Luyao
    Tian, Hongmei
    Guo, Xiao
    Jiang, Xinqiang
    Fan, Menglong
    Sun, Yingkun
    HORTICULTURAE, 2024, 10 (02)
  • [9] Identification of Dominant Transcripts in Oxidative Stress Response by a Full-Length Transcriptome Analysis
    Otsuki, Akihito
    Okamura, Yasunobu
    Aoki, Yuichi
    Ishida, Noriko
    Kumada, Kazuki
    Minegishi, Naoko
    Katsuoka, Fumiki
    Kinoshita, Kengo
    Yamamoto, Masayuki
    MOLECULAR AND CELLULAR BIOLOGY, 2021, 41 (02)
  • [10] Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances
    Sun, Shihang
    Lin, Miaomiao
    Qi, Xiujuan
    Chen, Jinyong
    Gu, Hong
    Zhong, Yunpeng
    Sun, Leiming
    Muhammad, Abid
    Bai, Danfeng
    Hu, Chungen
    Fang, Jinbao
    BMC PLANT BIOLOGY, 2021, 21 (01)