HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding

被引:1
|
作者
Song, Zhaoyi [1 ]
Zhang, Rongqing [1 ]
Cheng, Xiang [2 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai 200092, Peoples R China
[2] Peking Univ, Sch Elect, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/IROS55552.2023.10342261
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Multi-Agent Path Finding (MAPF) problem is a critical challenge in dynamic multi-robot systems. Recent studies have revealed that multi-agent reinforcement learning (MARL) is a promising approach to solving MAPF problems in a fully decentralized manner. However, as the size of the multi-robot system increases, sample inefficiency becomes a major impediment to learning-based methods. This paper presents a hierarchical reinforcement learning (HRL) framework for large-scale multi-agent path finding, featuring applying spatial and temporal abstraction to capture intermediate reward and thus encourage efficient exploration. Specifically, we introduce a meta controller that partitions the map into interconnected regions and optimizes agents' region-wise paths towards globally better solutions. Additionally, we design a lower-level controller that efficiently solves each sub-problem by incorporating heuristic guidance and an inter-agent communication mechanism with RL-based policies. Our empirical results on test instances of various scales demonstrate that our method outperforms existing approaches in terms of both success rate and makespan.
引用
收藏
页码:7318 / 7325
页数:8
相关论文
共 50 条
  • [31] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658
  • [32] Dynamic Dispatching for Large-Scale Heterogeneous Fleet via Multi-agent Deep Reinforcement Learning
    Zhang, Chi
    Odonkor, Philip
    Zheng, Shuai
    Khorasgani, Hamed
    Serita, Susumu
    Gupta, Chetan
    Wang, Haiyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1436 - 1441
  • [33] Coverage Optimization for Large-Scale Mobile Networks With Digital Twin and Multi-Agent Reinforcement Learning
    Liu, Haoqiang
    Li, Tong
    Jiang, Fenyu
    Su, Weikang
    Wang, Zhaocheng
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18316 - 18330
  • [34] Hierarchical resource usage coordination for large-scale multi-agent systems
    Jamali, N
    Zhao, XH
    MASSIVELY MULTI-AGENT SYSTEMS I, 2005, 3446 : 40 - 54
  • [35] Studies on hierarchical reinforcement learning in multi-agent environment
    Yu Lasheng
    Marin, Alonso
    Hong Fei
    Lin Jian
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1714 - 1720
  • [36] Multi-Agent Hierarchical Reinforcement Learning with Dynamic Termination
    Han, Dongge
    Boehmer, Wendelin
    Wooldridge, Michael
    Rogers, Alex
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2006 - 2008
  • [37] Multi-agent hierarchical reinforcement learning for energy management
    Jendoubi, Imen
    Bouffard, Francois
    APPLIED ENERGY, 2023, 332
  • [38] Multi-Agent Path Finding with Prioritized Communication Learning
    Li, Wenhao
    Chen, Hongjun
    Jin, Bo
    Tan, Wenzhe
    Zha, Hongyuan
    Wang, Xiangfeng
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 10695 - 10701
  • [39] Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination
    Han, Dongge
    Bohmer, Wendelin
    Wooldridge, Michael
    Rogers, Alex
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 : 80 - 92
  • [40] Hierarchical Multi-Agent Training Based on Reinforcement Learning
    Wang, Guanghua
    Li, Wenjie
    Wu, Zhanghua
    Guo, Xian
    2024 9TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS, ACIRS, 2024, : 11 - 18