MetNetComp: Database for Minimal and Maximal Gene-Deletion Strategies for Growth-Coupled Production of Genome-Scale Metabolic Networks

被引:1
作者
Tamura, Takeyuki [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Bioinformat Ctr, Uji, Kyoto 6110011, Japan
关键词
Biology and genetics; chemistry; combinatorial algorithms; graphs and networks; linear programming; scientific databases; KNOCKOUT STRATEGIES; FRAMEWORK;
D O I
10.1109/TCBB.2023.3317837
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Growth-coupled production, in which cell growth forces the production of target metabolites, plays an essential role in the production of substances by microorganisms. The strains are first designed using computational simulation and then validated by biological experiments. In the simulations, gene-deletion strategies are often necessary because many metabolites are not produced in the natural state of the microorganisms. However, such information is not available for many metabolites owing to the requirement of heavy computation, especially when many gene deletions are required for genome-scale models. A database for such information will be helpful. However, developing such a database is not straightforward because heavy computation and the existence of replaceable genes render difficulty in efficient enumeration. In this study, the author developed efficient methods for enumerating minimal and maximal gene-deletion strategies and a web-based database system. MetNetComp provides information on 1) a total of 85,611 gene-deletion strategies excluding apparent duplicate counting for replaceable genes for 1,735 target metabolites, 11 constraint-based models, and 10 species; 2) necessary substrates and products in the process; and 3) reaction rates that can be used for visualization. MetNetComp is helpful for strain design and for new research paradigms using machine learning.
引用
收藏
页码:3748 / 3758
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 2019, Commun., V10, P1
[2]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[3]   Computational tools for metabolic engineering [J].
Copeland, Wilbert B. ;
Bartley, Bryan A. ;
Chandran, Deepak ;
Galdzicki, Michal ;
Kim, Kyung H. ;
Sleight, Sean C. ;
Maranas, Costas D. ;
Sauro, Herbert M. .
METABOLIC ENGINEERING, 2012, 14 (03) :270-280
[4]   Truncated branch and bound achieves efficient constraint-based genetic design [J].
Egen, Dennis ;
Lun, Desmond S. .
BIOINFORMATICS, 2012, 28 (12) :1619-1623
[5]   IdealKnock: A framework for efficiently identifying knockout strategies leading to targeted overproduction [J].
Gu, Deqing ;
Zhang, Cheng ;
Zhou, Shengguo ;
Wei, Liujing ;
Hua, Qiang .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2016, 61 :229-237
[6]  
Gusfield D, 2019, INTEGER LINEAR PROGRAMMING IN COMPUTATIONAL AND SYSTEMS BIOLOGY, P1, DOI 10.1017/9781108377737
[7]   Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 [J].
Heirendt, Laurent ;
Arreckx, Sylvain ;
Pfau, Thomas ;
Mendoza, Sebastian N. ;
Richelle, Anne ;
Heinken, Almut ;
Haraldsdottir, Hulda S. ;
Wachowiak, Jacek ;
Keating, Sarah M. ;
Vlasov, Vanja ;
Magnusdottir, Stefania ;
Ng, Chiam Yu ;
Preciat, German ;
Zagare, Alise ;
Chan, Siu H. J. ;
Aurich, Maike K. ;
Clancy, Catherine M. ;
Modamio, Jennifer ;
Sauls, John T. ;
Noronha, Alberto ;
Bordbar, Aarash ;
Cousins, Benjamin ;
El Assal, Diana C. ;
Valcarcel, Luis V. ;
Apaolaza, Inigo ;
Ghaderi, Susan ;
Ahookhosh, Masoud ;
Ben Guebila, Marouen ;
Kostromins, Andrejs ;
Sompairac, Nicolas ;
Le, Hoai M. ;
Ma, Ding ;
Sun, Yuekai ;
Wang, Lin ;
Yurkovich, James T. ;
Oliveira, Miguel A. P. ;
Vuong, Phan T. ;
El Assal, Lemmer P. ;
Kuperstein, Inna ;
Zinovyev, Andrei ;
Hinton, H. Scott ;
Bryant, William A. ;
Aragon Artacho, Francisco J. ;
Planes, Francisco J. ;
Stalidzans, Egils ;
Maass, Alejandro ;
Vempala, Santosh ;
Hucka, Michael ;
Saunders, Michael A. ;
Maranas, Costas D. .
NATURE PROTOCOLS, 2019, 14 (03) :639-702
[8]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[9]   Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways [J].
King, Zachary A. ;
Draeger, Andreas ;
Ebrahim, Ali ;
Sonnenschein, Nikolaus ;
Lewis, Nathan E. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
[10]   Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models [J].
Lewis, Nathan E. ;
Hixson, Kim K. ;
Conrad, Tom M. ;
Lerman, Joshua A. ;
Charusanti, Pep ;
Polpitiya, Ashoka D. ;
Adkins, Joshua N. ;
Schramm, Gunnar ;
Purvine, Samuel O. ;
Lopez-Ferrer, Daniel ;
Weitz, Karl K. ;
Eils, Roland ;
Koenig, Rainer ;
Smith, Richard D. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6