Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity

被引:10
作者
Naim, Mouhcine [1 ]
Yaagoub, Zakaria [2 ]
Zeb, Anwar [3 ]
Sadki, Marya [2 ]
Allali, Karam [2 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben Msik, Lab Anal Modeling & Simulat, POB 7955, Casablanca, Morocco
[2] Hassan II Univ Casablanca, FST Mohammedia, Lab Math Comp Sci & Applicat, POB 146, Mohammadia, Morocco
[3] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunk, Pakistan
关键词
Viral model; Fractional model; Non-lytic immune; Global stability;
D O I
10.1007/s40808-023-01866-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we suggest a new fractional virus model with two routes of infection. The first is the usual virus-to-cell infection and the other is the direct transmission of cell-to-cell. The proposed model integrates the effect of the fractional derivative and the influence of adaptive immunity in the studied viral dynamics. Adaptive immunity is represented by cellular and humoral immune responses. The lytic and non-lytic immunological mechanisms that prevent viral reproduction and reduce cells infection are also included in our model. Caputo fractional derivatives are incorporated into each compartment of the model. We begin by showing that our suggested model is well-posed in terms of solution existence, uniqueness, non-negativity and boundedness. We prove that there are five equilibria in our enhanced viral model: virus-clear steady point E circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{\circ }$$\end{document}, immunity-free steady point E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{1}$$\end{document}, infection steady point with only cellular response E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{2}$$\end{document}, infection steady point with only humoral response E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{3}$$\end{document} and infection steady point with adaptive immunity E4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}_{4}$$\end{document}. By defining five kinds of reproduction numbers, we demonstrate the equilibria's global stability by utilizing the Lyapunov method and LaSalle's invariance principle. In addition, many numerical simulations are given to validate our theoretical results regarding the stability of steady points. The numerical outcomes also show that the long-term memory effect, represented by the fractional order derivative, does not affect the stability of the steady points. However, when the fractional order derivative is decreasing, solutions tend to reach equilibrium faster.
引用
收藏
页码:1749 / 1769
页数:21
相关论文
共 63 条
[1]   The influence of awareness campaigns on the spread of an infectious disease: a qualitative analysis of a fractional epidemic model [J].
Akdim, Khadija ;
Ez-Zetouni, Adil ;
Zahid, Mehdi .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (01) :1311-1319
[2]   Stochastic viral infection model with lytic and nonlytic immune responses driven by Levy noise [J].
Akdim, Khadija ;
Ez-zetouni, Adil ;
Danane, Jaouad ;
Allali, Karam .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 549
[3]   Mathematical modelling of within-host Chikungunya virus dynamics with adaptive immune response [J].
Alade, Taofeek O. ;
Alnegga, Mohammad ;
Olaniyi, Samson ;
Abidemi, Afeez .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (04) :3837-3849
[4]   The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model [J].
Ali, Aatif ;
Ullah, Saif ;
Khan, Muhammad Altaf .
NONLINEAR DYNAMICS, 2022, 110 (04) :3921-3940
[5]   Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread [J].
AlShamrani, N. H. .
CHAOS SOLITONS & FRACTALS, 2021, 150
[6]  
Baleanu D., 2012, Fractional Calculus, V3, DOI DOI 10.1142/8180
[7]   Fractional calculus in hydrologic modeling: A numerical perspective [J].
Benson, David A. ;
Meerschaert, Mark M. ;
Revielle, Jordan .
ADVANCES IN WATER RESOURCES, 2013, 51 :479-497
[8]   SARS-CoV-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study [J].
Chatterjee, Amar Nath ;
Basir, Fahad Al ;
Almuqrin, Muqrin A. ;
Mondal, Jayanta ;
Khan, Ilyas .
RESULTS IN PHYSICS, 2021, 26
[9]   Dynamic analysis of HIV model with a general incidence, CTLs immune response and intracellular delays [J].
Chen, Chong ;
Zhou, Yinggao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 212 :159-181
[10]   Modeling the cell-to-cell transmission dynamics of viral infection under the exposure of non-cytolytic cure [J].
Dhar, Mausumi ;
Samaddar, Shilpa ;
Bhattacharya, Paritosh .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) :885-911