Deep learning to detect macular atrophy in wet age-related macular degeneration using optical coherence tomography

被引:7
作者
Wei, Wei [1 ,2 ,3 ]
Southern, Joshua [4 ]
Zhu, Kexuan [2 ]
Li, Yefeng [5 ]
Cordeiro, Maria Francesca [1 ,3 ]
Veselkov, Kirill [1 ]
机构
[1] Imperial Coll London, Dept Surg & Canc, London, England
[2] Ningbo Med Ctr Lihuili Hosp, Ningbo, Peoples R China
[3] Imperial Coll Ophthalmol Res Grp, London, England
[4] Imperial Coll London, Comp, London, England
[5] Ningbo Univ Technol, Sch Cyber Sci & Engn, Ningbo, Peoples R China
基金
英国科研创新办公室;
关键词
GEOGRAPHIC ATROPHY; PROGRESSION; QUANTIFICATION; SEGMENTATION; VALIDATION; RECALL;
D O I
10.1038/s41598-023-35414-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we have developed a deep learning method to fully automatically detect and quantify six main clinically relevant atrophic features associated with macular atrophy (MA) using optical coherence tomography (OCT) analysis of patients with wet age-related macular degeneration (AMD). The development of MA in patients with AMD results in irreversible blindness, and there is currently no effective method of early diagnosis of this condition, despite the recent development of unique treatments. Using OCT dataset of a total of 2211 B-scans from 45 volumetric scans of 8 patients, a convolutional neural network using one-against-all strategy was trained to present all six atrophic features followed by a validation to evaluate the performance of the models. The model predictive performance has achieved a mean dice similarity coefficient score of 0.706 +/- 0.039, a mean Precision score of 0.834 +/- 0.048, and a mean Sensitivity score of 0.615 +/- 0.051. These results show the unique potential of using artificially intelligence-aided methods for early detection and identification of the progression of MA in wet AMD, which can further support and assist clinical decisions.
引用
收藏
页数:10
相关论文
共 38 条
[21]   Neovascular Age-Related Macular Degeneration: Therapeutic Management and New-Upcoming Approaches [J].
Ricci, Federico ;
Bandello, Francesco ;
Navarra, Pierluigi ;
Staurenghi, Giovanni ;
Stumpp, Michael ;
Zarbin, Marco .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) :1-40
[22]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[23]   Macular Atrophy in the HARBOR Study for Neovascular Age-Related Macular Degeneration [J].
Sadda, SriniVas R. ;
Tuomi, Lisa L. ;
Ding, Beiying ;
Fung, Anne E. ;
Hopkins, J. Jill .
OPHTHALMOLOGY, 2018, 125 (06) :878-886
[24]   Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT Classification of Atrophy Report 3 [J].
Sadda, Srinivas R. ;
Guymer, Robyn ;
Holz, Frank G. ;
Schmitz-Valckenberg, Steffen ;
Curcio, Christine A. ;
Bird, Alan C. ;
Blodi, Barbara A. ;
Bottoni, Ferdinando ;
Chakravarthy, Usha ;
Chew, Emily Y. ;
Csaky, Karl ;
Danis, Ronald P. ;
Fleckenstein, Monika ;
Freund, K. Bailey ;
Grunwald, Juan ;
Hoyng, Carel B. ;
Jaffe, Glenn J. ;
Liakopoulos, Sandra ;
Mones, Jordi M. ;
Pauleikhoff, Daniel ;
Rosenfeld, Philip J. ;
Sarraf, David ;
Spaide, Richard F. ;
Tadayoni, Ramin ;
Tufail, Adnan ;
Wolf, Sebastian ;
Staurenghi, Giovanni .
OPHTHALMOLOGY, 2018, 125 (04) :537-548
[25]   Machine Learning Techniques for Ophthalmic Data Processing: A Review [J].
Sarhan, Mhd Hasan ;
Nasseri, M. Ali ;
Zapp, Daniel ;
Maier, Mathias ;
Lohmann, Chris P. ;
Navab, Nassir ;
Eslami, Abouzar .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) :3338-3350
[26]   En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy [J].
Schaal, Karen B. ;
Gregori, Giovanni ;
Rosenfeld, Philip J. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 174 :145-154
[27]  
Schlegl Thomas, 2015, Inf Process Med Imaging, V24, P437, DOI 10.1007/978-3-319-19992-4_34
[28]   A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration [J].
Schmidt-Erfurth, U. ;
Klimscha, S. ;
Waldstein, S. M. ;
Bogunovic, H. .
EYE, 2017, 31 (01) :26-44
[29]   Artificial intelligence in retina [J].
Schmidt-Erfurth, Ursula ;
Sadeghipour, Amir ;
Gerendas, Bianca S. ;
Waldstein, Sebastian M. ;
Bogunovic, Hrvoje .
PROGRESS IN RETINAL AND EYE RESEARCH, 2018, 67 :1-29
[30]  
SU LT, 1994, J AM SOC INFORM SCI, V45, P207, DOI 10.1002/(SICI)1097-4571(199404)45:3<207::AID-ASI10>3.0.CO