Graph neural networks for construction applications

被引:21
|
作者
Jia, Yilong [1 ]
Wang, Jun [2 ]
Shou, Wenchi [2 ]
Hosseini, M. Reza [1 ]
Bai, Yu [3 ]
机构
[1] Deakin Univ, Fac Sci Engn & Built Environm, Sch Architecture & Built Environm, Geelong, Vic 3220, Australia
[2] Western Sydney Univ, Sch Engn Design & Built Environm, Penrith, NSW 2751, Australia
[3] Monash Univ, Fac Engn, Dept Civil Engn, Clayton, Vic 3800, Australia
关键词
Graph neural networks; Machine learning; Artificial intelligence; Architecture; Engineering; CONVOLUTIONAL NETWORK; GENERATIVE DESIGN; FRAMEWORK;
D O I
10.1016/j.autcon.2023.104984
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Graph Neural Networks (GNNs) have emerged as a promising solution for effectively handling non-Euclidean data in construction, including building information models (BIM) and scanned point clouds. However, despite their potential, there is a lack of comprehensive scholarly work providing a holistic understanding of the application of GNNs in the construction domain. This paper addresses this gap by conducting a thorough review of 34 publications on GNNs in construction, presenting a comprehensive overview of the current research landscape. By analyzing the existing literature, this paper aims to identify opportunities and challenges for further advancing the application of GNNs in construction. The findings from this review shed light on diverse approaches for constructing graph data from common construction data types and demonstrate the significant potential of GNNs for the industry. Moreover, this paper contributes to the existing body of knowledge by increasing awareness of the current state of GNNs in the construction industry and offering practical recommendations to overcome challenges in real-world practice.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Agglomeration of polygonal grids using graph neural networks with applications to multigrid solvers
    Antonietti, P. F.
    Farenga, N.
    Manuzzi, E.
    Martinelli, G.
    Saverio, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 154 : 45 - 57
  • [42] Beyond graph neural networks with lifted relational neural networks
    Sourek, Gustav
    Zelezny, Filip
    Kuzelka, Ondrej
    MACHINE LEARNING, 2021, 110 (07) : 1695 - 1738
  • [43] Clenshaw Graph Neural Networks
    Guo, Yuhe
    Wei, Zhewei
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 614 - 625
  • [44] AGGREGATION GRAPH NEURAL NETWORKS
    Gama, Fernando
    Marques, Antonio G.
    Ribeiro, Alejandro
    Leus, Geert
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4943 - 4947
  • [45] Graph neural networks for detecting anomalies in scientific workflows
    Jin, Hongwei
    Raghavan, Krishnan
    Papadimitriou, George
    Wang, Cong
    Mandal, Anirban
    Kiran, Mariam
    Deelman, Ewa
    Balaprakash, Prasanna
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (3-4) : 394 - 411
  • [46] Graph Neural Networks for Routing Optimization: Challenges and Opportunities
    Jiang, Weiwei
    Han, Haoyu
    Zhang, Yang
    Wang, Ji'an
    He, Miao
    Gu, Weixi
    Mu, Jianbin
    Cheng, Xirong
    SUSTAINABILITY, 2024, 16 (21)
  • [47] JGNN: Graph Neural Networks on native Java']Java
    Krasanakis, Emmanouil
    Papadopoulos, Symeon
    Kompatsiaris, Ioannis
    SOFTWAREX, 2023, 23
  • [48] A Survey of Graph Neural Networks for Electronic Design Automation
    Lopera, Daniela Sanchez
    Servadei, Lorenzo
    Kiprit, Gamze Naz
    Hazra, Souvik
    Wille, Robert
    Ecker, Wolfgang
    2021 ACM/IEEE 3RD WORKSHOP ON MACHINE LEARNING FOR CAD (MLCAD), 2021,
  • [49] Composite Graph Neural Networks for Molecular Property Prediction
    Bongini, Pietro
    Pancino, Niccolo
    Bendjeddou, Asma
    Scarselli, Franco
    Maggini, Marco
    Bianchini, Monica
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [50] Online adversarial knowledge distillation for graph neural networks
    Wang, Can
    Wang, Zhe
    Chen, Defang
    Zhou, Sheng
    Feng, Yan
    Chen, Chun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237