RAD51 bypasses the CMG helicase to promote replication fork reversal

被引:36
|
作者
Liu, Wenpeng [1 ]
Saito, Yuichiro [2 ,6 ]
Jackson, Jessica [3 ]
Bhowmick, Rahul [1 ]
Kanemaki, Masato T. [2 ,4 ,5 ]
Vindigni, Alessandro [3 ]
Cortez, David [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37237 USA
[2] Res Org Informat & Syst ROIS, Natl Inst Genet, Dept Chromosome Sci, Yata 1111, Mishima, Shizuoka 4118540, Japan
[3] Washington Univ, Sch Med, Dept Med, Div Oncol, St. Louis, MO 63110 USA
[4] Grad Univ Adv Studies SOKENDAI, Dept Genet, Yata 1111, Mishima, Shizuoka 4118540, Japan
[5] Univ Tokyo, Dept Biol Sci, Tokyo 1130033, Japan
[6] Mem Sloan Kettering Canc Ctr, Mol Biol Program, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
ATP HYDROLYSIS; DNA-REPAIR; DEGRADATION; BINDING; MUTATIONS; FILAMENTS; RESTART; REGRESSION; STABILITY; ROLES;
D O I
10.1126/science.add7328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Replication fork reversal safeguards genome integrity as a replication stress response. DNA translocases and the RAD51 recombinase catalyze reversal. However, it remains unknown why RAD51 is required and what happens to the replication machinery during reversal. We find that RAD51 uses its strand exchange activity to circumvent the replicative helicase, which remains bound to the stalled fork. RAD51 is not required for fork reversal if the helicase is unloaded. Thus, we propose that RAD51 creates a parental DNA duplex behind the helicase that is used as a substrate by the DNA translocases for branch migration to create a reversed fork structure. Our data explain how fork reversal happens while maintaining the helicase in a position poised to restart DNA synthesis and complete genome duplication.
引用
收藏
页码:382 / +
页数:6
相关论文
共 50 条
  • [41] Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms
    Carreira, Aura
    Kowalczykowski, Stephen C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (26) : 10448 - 10453
  • [42] BRCA2 and RAD51 Promote Double-Strand Break Formation and Cell Death in Response to Gemcitabine
    Jones, Rebecca M.
    Kotsantis, Panagiotis
    Stewart, Grant S.
    Groth, Petra
    Petermann, Eva
    MOLECULAR CANCER THERAPEUTICS, 2014, 13 (10) : 2412 - 2421
  • [43] MiR-96 Downregulates REV1 and RAD51 to Promote Cellular Sensitivity to Cisplatin and PARP Inhibition
    Wang, Yemin
    Huang, Jen-Wei
    Calses, Philamer
    Kemp, Christopher J.
    Taniguchi, Toshiyasu
    CANCER RESEARCH, 2012, 72 (16) : 4037 - 4046
  • [44] The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51
    Bronstein, Alex
    Gershon, Lihi
    Grinberg, Gilad
    Alonso-Perez, Elisa
    Kupiec, Martin
    MBIO, 2018, 9 (04):
  • [45] Double-strand break repair in the absence of RAD51 in yeast: A possible role for break-induced DNA replication
    Malkova, A
    Ivanov, EL
    Haber, JE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) : 7131 - 7136
  • [46] The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway
    Mac, Michelle
    DeVico, Brianna M. M.
    Raspanti, Sophia M. M.
    Moody, Cary A. A.
    JOURNAL OF VIROLOGY, 2023, 97 (05) : e0020123
  • [47] RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
    Hu, Yiduo
    Raynard, Steven
    Sehorn, Michael G.
    Lu, Xincheng
    Bussen, Wendy
    Zheng, Lu
    Stark, Jeremy M.
    Barnes, Ellen L.
    Chi, Peter
    Janscak, Pavel
    Jasin, Maria
    Vogel, Hannes
    Sung, Patrick
    Luo, Guangbin
    GENES & DEVELOPMENT, 2007, 21 (23) : 3073 - 3084
  • [48] Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51
    Heijink, Anne Margriet
    Stok, Colin
    Porubsky, David
    Manolika, Eleni Maria
    de Kanter, Jurrian K.
    Kok, Yannick P.
    Everts, Marieke
    de Boer, H. Rudolf
    Audrey, Anastasia
    Bakker, Femke J.
    Wierenga, Elles
    Tijsterman, Marcel
    Guryev, Victor
    Spierings, Diana C. J.
    Knipscheer, Puck
    van Boxtel, Ruben
    Chaudhuri, Arnab Ray
    Lansdorp, Peter M.
    van Vugt, Marcel A. T. M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress
    Chastain, Megan
    Zhou, Qing
    Shiva, Olga
    Whitmore, Leanne
    Jia, Pingping
    Dai, Xueyu
    Huang, Chenhui
    Fadri-Moskwik, Maria
    Ye, Ping
    Chai, Weihang
    Cell Reports, 2016, 16 (05): : 1300 - 1314
  • [50] Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae
    Miki Ii
    Steven J. Brill
    Current Genetics, 2005, 48 : 213 - 225