RAD51 bypasses the CMG helicase to promote replication fork reversal

被引:36
|
作者
Liu, Wenpeng [1 ]
Saito, Yuichiro [2 ,6 ]
Jackson, Jessica [3 ]
Bhowmick, Rahul [1 ]
Kanemaki, Masato T. [2 ,4 ,5 ]
Vindigni, Alessandro [3 ]
Cortez, David [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37237 USA
[2] Res Org Informat & Syst ROIS, Natl Inst Genet, Dept Chromosome Sci, Yata 1111, Mishima, Shizuoka 4118540, Japan
[3] Washington Univ, Sch Med, Dept Med, Div Oncol, St. Louis, MO 63110 USA
[4] Grad Univ Adv Studies SOKENDAI, Dept Genet, Yata 1111, Mishima, Shizuoka 4118540, Japan
[5] Univ Tokyo, Dept Biol Sci, Tokyo 1130033, Japan
[6] Mem Sloan Kettering Canc Ctr, Mol Biol Program, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
ATP HYDROLYSIS; DNA-REPAIR; DEGRADATION; BINDING; MUTATIONS; FILAMENTS; RESTART; REGRESSION; STABILITY; ROLES;
D O I
10.1126/science.add7328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Replication fork reversal safeguards genome integrity as a replication stress response. DNA translocases and the RAD51 recombinase catalyze reversal. However, it remains unknown why RAD51 is required and what happens to the replication machinery during reversal. We find that RAD51 uses its strand exchange activity to circumvent the replicative helicase, which remains bound to the stalled fork. RAD51 is not required for fork reversal if the helicase is unloaded. Thus, we propose that RAD51 creates a parental DNA duplex behind the helicase that is used as a substrate by the DNA translocases for branch migration to create a reversed fork structure. Our data explain how fork reversal happens while maintaining the helicase in a position poised to restart DNA synthesis and complete genome duplication.
引用
收藏
页码:382 / +
页数:6
相关论文
共 50 条
  • [21] The FLIP-FIGNL1 complex regulates the dissociation of RAD51/DMC1 in homologous recombination and replication fork restart
    Zhang, Qianting
    Fan, Jiayi
    Xu, Wei
    Cao, Huiwen
    Qiu, Cheng
    Xiong, Yi
    Zhao, Huacun
    Wang, Yong
    Huang, Jun
    Yu, Chao
    NUCLEIC ACIDS RESEARCH, 2023, 51 (16) : 8606 - 8622
  • [22] Replication fork collapse at a protein-DNA roadblock leads to fork reversal, promoted by the RecQ helicase
    Weaver, Georgia M.
    Mettrick, Karla A.
    Corocher, Tayla-Ann
    Graham, Adam
    Grainge, Ian
    MOLECULAR MICROBIOLOGY, 2019, 111 (02) : 455 - 472
  • [23] RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models
    Talens, Francien
    Teixeira, Vivian Oliviera Nunes
    Kok, Yannick P.
    Chen, Mengting
    Rosenberg, Efraim H.
    Debipersad, Rashmie
    Duiker, Evelien W.
    van den Tempel, Nathalie
    Janatova, Marketa
    Zemankova, Petra
    Nederlof, Petra M.
    Wisman, G. Bea A.
    Kleibl, Zdenek
    de Jong, Steven
    van Vugt, Marcel A. T. M.
    NAR CANCER, 2024, 6 (04):
  • [24] FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells
    Simandlova, Jitka
    Zagelbaum, Jennifer
    Payne, Miranda J.
    Chu, Wai Kit
    Shevelev, Igor
    Hanada, Katsuhiro
    Chatterjee, Sujoy
    Reid, Dylan A.
    Liu, Ying
    Janscak, Pavel
    Rothenberg, Eli
    Hickson, Ian D.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (47) : 34168 - 34180
  • [25] SUMO Modification Regulates BLM and RAD51 Interaction at Damaged Replication Forks
    Ouyang, Karen J.
    Woo, Leslie L.
    Zhu, Jianmei
    Huo, Dezheng
    Matunis, Michael J.
    Ellis, Nathan A.
    PLOS BIOLOGY, 2009, 7 (12)
  • [26] Combined inhibition of RAD51 and CHK1 causes synergistic toxicity in cisplatin resistant cancer cells by triggering replication fork collapse
    Mann, Julia
    Niedermayer, Kathrin
    Krautstrunk, Johannes
    Abbey, Lena
    Wiesmueller, Lisa
    Piekorz, Roland P.
    Fritz, Gerhard
    INTERNATIONAL JOURNAL OF CANCER, 2025, 156 (02) : 389 - 402
  • [27] Brca2, Rad51 and Mre11: Performing balancing acts on replication forks
    Costanzo, Vincenzo
    DNA REPAIR, 2011, 10 (10) : 1060 - 1065
  • [28] ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress
    Park, Su Hyung
    Kang, Nalae
    Song, Eunho
    Wie, Minwoo
    Lee, Eun A.
    Hwang, Sunyoung
    Lee, Deokjae
    Ra, Jae Sun
    Park, In Bae
    Park, Jieun
    Kang, Sukhyun
    Park, Jun Hong
    Hohng, Sungchul
    Lee, Kyoo-young
    Myung, Kyungjae
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [29] Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA
    Akita, Masaki
    Girvan, Paul
    Spirek, Mario
    Novacek, Jiri
    Rueda, David
    Prokop, Zbynek
    Krejci, Lumir
    NUCLEIC ACIDS RESEARCH, 2024, 52 (19) : 11738 - 11752
  • [30] RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks
    Dungrawala, Huzefa
    Bhat, Kamakoti P.
    Le Meur, Remy
    Chazin, Walter J.
    Ding, Xia
    Sharan, Shyam K.
    Wessel, Sarah R.
    Sathe, Aditya A.
    Zhao, Runxiang
    Cortez, David
    MOLECULAR CELL, 2017, 67 (03) : 374 - +