RAD51 bypasses the CMG helicase to promote replication fork reversal

被引:36
|
作者
Liu, Wenpeng [1 ]
Saito, Yuichiro [2 ,6 ]
Jackson, Jessica [3 ]
Bhowmick, Rahul [1 ]
Kanemaki, Masato T. [2 ,4 ,5 ]
Vindigni, Alessandro [3 ]
Cortez, David [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37237 USA
[2] Res Org Informat & Syst ROIS, Natl Inst Genet, Dept Chromosome Sci, Yata 1111, Mishima, Shizuoka 4118540, Japan
[3] Washington Univ, Sch Med, Dept Med, Div Oncol, St. Louis, MO 63110 USA
[4] Grad Univ Adv Studies SOKENDAI, Dept Genet, Yata 1111, Mishima, Shizuoka 4118540, Japan
[5] Univ Tokyo, Dept Biol Sci, Tokyo 1130033, Japan
[6] Mem Sloan Kettering Canc Ctr, Mol Biol Program, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
ATP HYDROLYSIS; DNA-REPAIR; DEGRADATION; BINDING; MUTATIONS; FILAMENTS; RESTART; REGRESSION; STABILITY; ROLES;
D O I
10.1126/science.add7328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Replication fork reversal safeguards genome integrity as a replication stress response. DNA translocases and the RAD51 recombinase catalyze reversal. However, it remains unknown why RAD51 is required and what happens to the replication machinery during reversal. We find that RAD51 uses its strand exchange activity to circumvent the replicative helicase, which remains bound to the stalled fork. RAD51 is not required for fork reversal if the helicase is unloaded. Thus, we propose that RAD51 creates a parental DNA duplex behind the helicase that is used as a substrate by the DNA translocases for branch migration to create a reversed fork structure. Our data explain how fork reversal happens while maintaining the helicase in a position poised to restart DNA synthesis and complete genome duplication.
引用
收藏
页码:382 / +
页数:6
相关论文
共 50 条
  • [1] RADX Modulates RAD51 Activity to Control Replication Fork Protection
    Bhat, Kamakoti P.
    Krishnamoorthy, Archana
    Dungrawala, Huzefa
    Garcin, Edwige B.
    Modesti, Mauro
    Cortez, David
    CELL REPORTS, 2018, 24 (03): : 538 - 545
  • [2] Cooperation of RAD51 and RAD54 in regression of a model replication fork
    Bugreev, Dmitry V.
    Rossi, Matthew J.
    Mazin, Alexander V.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (06) : 2153 - 2164
  • [3] RADX controls RAD51 filament dynamics to regulate replication fork stability
    Adolph, Madison B.
    Mohamed, Taha M.
    Balakrishnan, Swati
    Xue, Chaoyou
    Morati, Florian
    Modesti, Mauro
    Greene, Eric C.
    Chazin, Walter J.
    Cortez, David
    MOLECULAR CELL, 2021, 81 (05) : 1074 - 1083.e5
  • [4] RAD51 protects abasic sites to prevent replication fork breakage
    Hanthi, Yodhara Wijesekara
    Ramirez-Otero, Miguel Angel
    Appleby, Robert
    De Antoni, Anna
    Joudeh, Luay
    Sannino, Vincenzo
    Waked, Salli
    Ardizzoia, Alessandra
    Barra, Viviana
    Fachinetti, Daniele
    Pellegrini, Luca
    Costanzo, Vincenzo
    MOLECULAR CELL, 2024, 84 (16) : 3026 - 3043.e11
  • [5] Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection
    Zadorozhny, Karina
    Sannino, Vincenzo
    Belan, Ondrej
    Mlcouskova, Jarmila
    Spirek, Mario
    Costanzo, Vincenzo
    Krejci, Lumir
    CELL REPORTS, 2017, 21 (02): : 333 - 340
  • [6] Sequential role of RAD51 paralog complexes in replication fork remodeling and restart
    Berti, Matteo
    Teloni, Federico
    Mijic, Sofija
    Ursich, Sebastian
    Fuchs, Jevgenij
    Palumbieri, Maria Dilia
    Krietsch, Jana
    Schmid, Jonas A.
    Garcin, Edwige B.
    Gon, Stephanie
    Modesti, Mauro
    Altmeyer, Matthias
    Lopes, Massimo
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress
    Feu, Sonia
    Unzueta, Fernando
    Ercilla, Amaia
    Perez-Venteo, Alejandro
    Jaumot, Montserrat
    Agell, Neus
    PLOS ONE, 2022, 17 (08):
  • [8] Disparate requirements for RAD54L in replication fork reversal
    Uhrig, Mollie E.
    Sharma, Neelam
    Maxwell, Petey
    Gomez, Jordi
    Selemenakis, Platon
    Mazin, Alexander, V
    Wiese, Claudia
    NUCLEIC ACIDS RESEARCH, 2024, 52 (20) : 12390 - 12404
  • [9] NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection
    Abeyta, Antonio
    Castella, Maria
    Jacquemont, Celine
    Taniguchi, Toshiyasu
    CELL CYCLE, 2017, 16 (04) : 335 - 347
  • [10] RAD51-and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks
    Hashimoto, Yoshitami
    Puddu, Fabio
    Costanzo, Vincenzo
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (01) : 17 - U30