Rational construction of metal-organic framework derived dual-phase doping N-TiO2 plus S-carbon yolk-shell nanodisks for high-performance lithium ion batteries

被引:21
作者
Cai, Chen [1 ]
Yao, Zhujun [1 ,3 ,4 ]
Xiang, Jiayuan [2 ]
Chang, Xinhao [1 ]
Yao, Weilin [1 ]
He, Linxuan [1 ]
Ruan, Lingfeng [1 ]
Chen, Zihang [1 ]
Shi, Juntao [1 ]
Liu, Tiancun [1 ]
Shen, Shenghui [1 ]
Xie, Haijiao [6 ]
Yang, Yefeng [1 ,5 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Narada Power Source Co Ltd, Hangzhou 310030, Peoples R China
[3] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[4] Zhejiang Sci Tech Univ, Tongxiang Res Inst, Jiaxing 314500, Zhejiang, Peoples R China
[5] Zhejiang Sci Tech Univ, MOE Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China
[6] Hangzhou Yanqu Informat Technol Co Ltd, Hangzhou 310003, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen doping; Yolk-shell; Sulfur-doping; Metal organic frameworks; Lithium-ion batteries; NITROGEN-DOPED TIO2; FILM ELECTRODE; HIGH-CAPACITY; HOLLOW TIO2; ANODE; NANOCRYSTALS; NANOSPHERES; CATALYST; HYBRID; LIFE;
D O I
10.1016/j.electacta.2023.142323
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Known as a low-strain anode material for lithium ion batteries (LIBs), the poor electronic/ionic conductivity of TiO2 is threatening to achieve satisfactory lithium ion storage performance. Herein, dual-phase doping combined with structure design strategy is carried out to construct yolk-shell nanodisks decorated with N-doped TiO2 nanosheets, S-doped carbon and conductive Ni nanoparticles (N-TiO2/S-C/Ni) to realize enhanced electro-chemical performance. Thanks to the N-doping in TiO2 and S-doping in metal organic frameworks (MOFs) derived carbon, the lithium ion adsorption energy of the composite can be enhanced to promote kinetic process, which is proved by density functional theory (DFT). Moreover, the elaborate yolk-shell structure with great specific surface area and abundant holes will induce plentiful sites for electrochemical reaction and make the transport pathway of ions/electrons shorter. Profiting from the above appealing features, the N-TiO2/S-C/Ni electrode displays a high capacity of 649 mAh g(-1) at 0.1 A g(-1) and 441 mAh g(-1) at 1 A g(-1) after cycling with the Coulombic efficiency of nearly 100%. On top of that, TiO2//LiFePO4 full batteries are assembled to estimate the practical value of N-TiO2/S-C/Ni.
引用
收藏
页数:10
相关论文
共 55 条
  • [51] Ultrafine TiO2 nanocrystalline anchored on nitrogen-doped amorphous mesoporous hollow carbon nanospheres as advanced anode for lithium ion batteries
    Yuan, Yongfeng
    Chen, Fei
    Cai, Gaocan
    Yin, Simin
    Zhu, Min
    Wang, Lina
    Yang, Jinlin
    Guo, Shaoyi
    [J]. ELECTROCHIMICA ACTA, 2019, 296 (669-675) : 669 - 675
  • [52] Rapid and Controllable Synthesis of Nanocrystallized Nickel-Cobalt Boride Electrode Materials via a Mircoimpinging Stream Reaction for High Performance Supercapacitors
    Zhang, Qingcheng
    Zhao, Junping
    Wu, Yechao
    Li, Jun
    Jin, Huile
    Zhao, Shiqiang
    Chai, Lulu
    Wang, Yahui
    Lei, Yong
    Wang, Shun
    [J]. SMALL, 2020, 16 (39)
  • [53] Metal-Organic Frameworks for Batteries
    Zhao, Ruo
    Liang, Zibin
    Zou, Ruqiang
    Xu, Qiang
    [J]. JOULE, 2018, 2 (11) : 2235 - 2259
  • [54] Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage
    Zhao, Zhifan
    Teng, Xiaojing
    Xiong, Qinqin
    Chi, Hongzhong
    Yuan, Yongjun
    Qin, Haiying
    Ji, Zhenguo
    [J]. SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 29
  • [55] Surface Engineering and Design Strategy for Surface-Amorphized TiO2@Graphene Hybrids for High Power Li-Ion Battery Electrodes
    Zhou, Tengfei
    Zheng, Yang
    Gao, Hong
    Min, Shudi
    Li, Sean
    Liu, Hua Kun
    Guo, Zaiping
    [J]. ADVANCED SCIENCE, 2015, 2 (09):