The isomorphism of generalized Cayley graphs on finite non-abelian simple groups

被引:1
作者
Zhu, Xiao-Min [1 ]
Liu, Weijun [2 ]
Yang, Xu [3 ]
机构
[1] Shanghai Inst Technol, Coll Sci, Shanghai 201418, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
Fusion class; Generalized Cayley graph; Finite non-abelian simple groups; Restricted; 2-GCI-groups; ELEMENTS; ORDER; AUTOMORPHISMS; CONJUGATE;
D O I
10.1016/j.disc.2022.113292
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The isomorphism problem is a fundamental problem for algebraic and combinatorial structures, particularly in relation to Cayley graphs. Let Xi = GC(G, Si, alpha i), (i = 1, 2) be generalized Cayley graphs. If whenever X1 similar to= X2, it implies that alpha 2 = alpha 1 gamma and S2 = g-1S gamma 1 g alpha 2 for some g is an element of G and gamma is an element of Aut(G), then G is a strongly generalized Cayley isomorphism (GCI)-group. In this study, we defined (strongly, restricted) m-GCI-groups. These definitions are similar to those of m-CI-groups for Cayley graphs. Our main results demonstrate that a finite non-abelian simple group G is a restricted 2-GCI-group if and only if G is one of A5, L2(8), M11, Sz(8), or M23, and G is a 2-GCI-group if and only if G is A5 or L2(8).
引用
收藏
页数:10
相关论文
共 20 条