Diffusion unit: Interpretable edge enhancement and suppression learning for 3D point cloud segmentation

被引:9
作者
Xiu, Haoyi [1 ,2 ]
Liu, Xin [1 ]
Wang, Weimin [1 ]
Kim, Kyoung-Sook [1 ]
Shinohara, Takayuki [3 ]
Chang, Qiong [4 ]
Matsuoka, Masashi [2 ]
机构
[1] AIST, Artificial Intelligence Res Ctr, Tokyo, Japan
[2] Tokyo Inst Technol, Dept Architecture & Bldg Engn, Tokyo, Japan
[3] PASCO Corp, Innovat Technol Off Res Ctr, Tokyo, Japan
[4] Tokyo Inst Technol, Dept Comp Sci, Tokyo, Japan
关键词
3D point clouds; Diffusion; Edge awareness; Edge enhancement; Deep learning; Segmentation; NEURAL-NETWORKS;
D O I
10.1016/j.neucom.2023.126780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D point clouds are discrete samples of continuous surfaces which can be used for various applications. However, the lack of true connectivity information, i.e., edge information, makes point cloud recognition challenging. Recent edge-aware methods incorporate edge modeling into network designs to better describe local structures. Although these methods show that incorporating edge information is beneficial, how edge information helps remains unclear, making it difficult for users to analyze its usefulness. To shed light on this issue, in this study, we propose a new algorithm called Diffusion Unit (DU) that handles edge information in a principled and interpretable manner while providing decent improvement. First, we theoretically show that DU learns to perform task-beneficial edge enhancement and suppression. Second, we experimentally observe and verify the edge enhancement and suppression behavior. Third, we empirically demonstrate that this behavior contributes to performance improvement. Extensive experiments and analyses performed on challenging benchmarks verify the effectiveness of DU. Specifically, our method achieves state-of-the-art performance in object part segmentation using ShapeNet part and scene segmentation using S3DIS. Our source code is available at https://github.com/martianxiu/DiffusionUnit.
引用
收藏
页数:12
相关论文
共 78 条
[1]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[2]  
Atwood J, 2016, ADV NEUR IN, V29
[3]   Anisotropic diffusion of surfaces and functions on surfaces [J].
Bajaj, CL ;
Xu, GL .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (01) :4-32
[4]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[5]   Nonlinear structure tensors [J].
Brox, T ;
Weickert, J ;
Burgeth, B ;
Mrázek, P .
IMAGE AND VISION COMPUTING, 2006, 24 (01) :41-55
[6]  
Chamberlain BP, 2021, PR MACH LEARN RES, V139
[7]   PointMixer: MLP-Mixer for Point Cloud Understanding [J].
Choe, Jaesung ;
Park, Chunghyun ;
Rameau, Francois ;
Park, Jaesik ;
Kweon, In So .
COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 :620-640
[8]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[9]   Anisotropic geometric diffusion in surface processing [J].
Clarenz, U ;
Diewald, U ;
Rumpf, M .
VISUALIZATION 2000, PROCEEDINGS, 2000, :397-405
[10]   Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review [J].
Cui, Yaodong ;
Chen, Ren ;
Chu, Wenbo ;
Chen, Long ;
Tian, Daxin ;
Li, Ying ;
Cao, Dongpu .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) :722-739