Energy conserving particle-in-cell methods for relativistic Vlasov-Maxwell equations of laser-plasma interaction

被引:3
作者
Li, Yingzhe [1 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
关键词
Energy conserving; Laser plasma interaction; Discrete gradient; Finite element exterior calculus; DISCONTINUOUS GALERKIN METHODS; SYSTEM; INTEGRATION; SCHEME;
D O I
10.1016/j.jcp.2022.111733
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work studies a class of reduced relativistic Vlasov-Maxwell equations describing laser-plasma interaction. Fully discrete schemes are obtained by discretizing distribution functions using particle-in-cell methods, discretizing electromagnetic fields with compatible finite element methods in the framework of finite element exterior calculus in space, and discrete gradient methods combined with splitting methods in time. The proposed schemes are energy conserving and the discrete Poisson equations are also satisfied by the numerical solutions. Numerical experiments of parametric instability are conducted to validate the conservation properties and illustrate good long time behaviors of the numerical methods.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 44 条
  • [1] FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY
    Arnold, Douglas N.
    Falk, Richard S.
    Winther, Ragnar
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) : 281 - 354
  • [2] Semi-relativistic effects in spin-1/2 quantum plasmas
    Asenjo, Felipe A.
    Zamanian, Jens
    Marklund, Mattias
    Brodin, Gert
    Johansson, Petter
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [3] Two-dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime
    Bégué, ML
    Ghizzo, A
    Bertrand, P
    Sonnendrücker, E
    Coulaud, O
    [J]. JOURNAL OF PLASMA PHYSICS, 1999, 62 : 367 - 388
  • [4] Birdsall C., 1985, PLASMA PHYS VIA COMP
  • [5] Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction
    Bostan, Mihai
    Crouseilles, Nicolas
    [J]. NUMERISCHE MATHEMATIK, 2009, 112 (02) : 169 - 195
  • [6] Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction
    Bostan, Mlhal
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2007, 65 (01) : 163 - 187
  • [7] Isogeometric analysis in electromagnetics: B-splines approximation
    Buffa, A.
    Sangalli, G.
    Vazquez, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (17-20) : 1143 - 1152
  • [8] Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction
    Carrillo, JA
    Labrunie, S
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01) : 19 - 57
  • [9] Preserving energy resp dissipation in numerical PDEs using the "Average Vector Field" method
    Celledoni, E.
    Grimm, V.
    McLachlan, R. I.
    McLaren, D. I.
    O'Neale, D.
    Owren, B.
    Quispel, G. R. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (20) : 6770 - 6789
  • [10] A semi-implicit, energy- and charge-conserving particle-in-cell algorithm for the relativistic Vlasov-Maxwell equations
    Chen, G.
    Chacon, L.
    Yin, L.
    Albright, B. J.
    Stark, D. J.
    Bird, R. F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407