First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC

被引:1
作者
Dai, Tianyuan [1 ,2 ]
Sloop, Austin M. [1 ]
Rahman, Mahbubur R. [3 ]
Sunnerberg, Jacob P. [1 ]
Clark, Megan A. [1 ]
Young, Ralph [4 ]
Adamczyk, Sebastian [4 ]
Von Voigts-Rhetz, Philip [4 ]
Patane, Chris [4 ]
Turk, Michael [4 ]
Jarvis, Lesley [5 ,6 ]
Pogue, Brian W. [1 ,6 ,7 ]
Gladstone, David J. [1 ,5 ,6 ]
Bruza, Petr [1 ]
Zhang, Rongxiao [1 ,5 ,8 ,9 ]
机构
[1] Dartmouth Coll Hanover, Thayer Sch Engn, New Hampshire, OH USA
[2] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Radiat Oncol Phys & Technol, Jinan, Shandong, Peoples R China
[3] UT Southwestern Med Ctr, Dallas, TX USA
[4] Intraop Med Corp, Sunnyvale, CA USA
[5] Dartmouth Coll, Geisel Sch Med, Dept Med, Hanover, NH USA
[6] Dartmouth Hitchcock Med Ctr, Dartmouth Canc Ctr, Lebanon, NH USA
[7] Univ Wisconsin, Wisconsin Inst Med Res, Dept Med Phys, Madison, WI USA
[8] New York Med Coll, Dept Radiat Med, Valhalla, NY USA
[9] New York Med Coll, Dept Radiat Med, Valhalla, NY 10595 USA
基金
中国国家自然科学基金;
关键词
electron; FLASH; Monte Carlo; radiotherapy; ultra-high dose rate; LINEAR-ACCELERATOR; RADIATION; IMPLEMENTATION; VALIDATION; SIMULATION;
D O I
10.1002/mp.17031
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. Purpose: To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. Methods: The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. Results: The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (sigma) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. Conclusions: A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
引用
收藏
页码:5109 / 5118
页数:10
相关论文
共 32 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] GAMOS: A framework to do GEANT4 simulations in different physics fields with an user-friendly interface
    Arce, Pedro
    Ignacio Lagares, Juan
    Harkness, Laura
    Perez-Astudillo, Daniel
    Canadas, Mario
    Rato, Pedro
    de Prado, Maria
    Abreu, Yamiel
    de Lorenzo, Gianluca
    Kolstein, Machiel
    Diaz, Angelina
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 735 : 304 - 313
  • [3] Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM radiation therapy committee task group no. 72
    Beddar, A. Sam
    Biggs, Peter J.
    Chang, Sha
    Ezzell, Gary A.
    Faddegon, Bruce A.
    Hensley, Frank W.
    Mills, Michael D.
    [J]. MEDICAL PHYSICS, 2006, 33 (05) : 1476 - 1489
  • [4] Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analysis
    Boehlen, Till Tobias
    Germond, Jean-Francois
    Bourhis, Jean
    Vozenin, Marie-Catherine
    Ozsahin, Esat Mahmut
    Bochud, Francois
    Bailat, Claude
    Moeckli, Raphael
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (05): : 1032 - 1044
  • [5] Bohlen TT., 2023, INT J RADIAT ONCOL
  • [6] Treatment of a first patient with FLASH-radiotherapy
    Bourhis, Jean
    Sozzi, Wendy Jeanneret
    Jorge, Patrik Goncalves
    Gaide, Olivier
    Bailat, Claude
    Duclos, Frederic
    Patin, David
    Ozsahin, Mahmut
    Bochud, Francois
    Germond, Jean-Francois
    Moeckli, Raphael
    Vozenin, Marie-Catherine
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 139 : 18 - 22
  • [7] Clinical translation of FLASH radiotherapy: Why and how?
    Bourhis, Jean
    Montay-Gruel, Pierre
    Jorge, Patrik Goncalves
    Bailat, Claude
    Petit, Benoit
    Ollivier, Jonathan
    Jeanneret-Sozzi, Wendy
    Ozsahin, Mahmut
    Bochud, Francois
    Moeckli, Raphael
    Germond, Jean-Francois
    Vozenin, Marie-Catherine
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 139 : 11 - 17
  • [8] Comparison of Gonadal Toxicity of Single-Fraction Ultra-High Dose Rate and Conventional Radiation in Mice
    Cuitino, Maria C.
    Fleming, Jessica L.
    Jain, Sagarika
    Cetnar, Ashley
    Ayan, Ahmet S.
    Woollard, Jeffrey
    Manring, Heather
    Meng, Wei
    Mcelroy, Joseph P.
    Blakaj, Dukagjin M.
    Gupta, Nilendu
    Chakravarti, Arnab
    [J]. ADVANCES IN RADIATION ONCOLOGY, 2023, 8 (04)
  • [9] Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System
    Diffenderfer, Eric S.
    Verginadis, Ioannis I.
    Kim, Michele M.
    Shoniyozov, Khayrullo
    Velalopoulou, Anastasia
    Goia, Denisa
    Putt, Mary
    Hagan, Sarah
    Avery, Stephen
    Teo, Kevin
    Zou, Wei
    Lin, Alexander
    Swisher-McClure, Samuel
    Koch, Cameron
    Kennedy, Ann R.
    Minn, Andy
    Maity, Amit
    Busch, Theresa M.
    Dong, Lei
    Koumenis, Costas
    Metz, James
    Cengel, Keith A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 106 (02): : 440 - 448
  • [10] Radical Production with Pulsed Beams: Understanding the Transition to FLASH
    Espinosa-Rodriguez, Andrea
    Sanchez-Parcerisa, Daniel
    Ibanez, Paula
    Antonio Vera-Sanchez, Juan
    Mazal, Alejandro
    Mario Fraile, Luis
    Manuel Udias, Jose
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)