Boosting Multielectron Reaction Stability of Sodium Vanadium Phosphate by High-Entropy Substitution

被引:58
作者
Hao, Zhiqiang [1 ,2 ]
Shi, Xiaoyan [1 ,2 ]
Zhu, Wenqing [1 ,2 ]
Yang, Zhuo [1 ,2 ]
Zhou, Xunzhu [1 ,2 ]
Wang, Chenchen [3 ]
Li, Lin [1 ,2 ]
Hua, Weibo [4 ,5 ]
Ma, Chang-Qi [6 ]
Chou, Shulei [1 ,2 ]
机构
[1] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Wenzhou Univ, Technol Innovat Inst Carbon Neutralizat, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Scotland
[4] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
[5] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76344 Karlsruhe, Germany
[6] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, i Lab & Printable Elect Res Ctr, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; sodium vanadium phosphate; high-entropy substitution; multielectron reactions; sodium-storage mechanism; ION BATTERIES; NA-ION; NA3V2(PO4)(3) CATHODE; LIFE; MICROSPHERES; PERFORMANCE; ELECTRODE; GRAPHITE; ANODE;
D O I
10.1021/acsnano.3c09519
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Na3V2(PO4)(3) (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g(-1) even at 5.0 A g(-1)). Besides, the long cycle life and high power density of the HE-NVP parallel to natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.
引用
收藏
页码:9354 / 9364
页数:11
相关论文
共 52 条
[41]   An all Prussian blue analog-based aprotic sodium-ion battery [J].
Xu, Li ;
Li, Hui ;
Du, Ting ;
Xue, Qing ;
Gao, Yuting ;
Yu, Zhuangzhuang ;
Bai, Huitao .
BATTERY ENERGY, 2022, 1 (02)
[42]   Research Development on Sodium-Ion Batteries [J].
Yabuuchi, Naoaki ;
Kubota, Kei ;
Dahbi, Mouad ;
Komaba, Shinichi .
CHEMICAL REVIEWS, 2014, 114 (23) :11636-11682
[43]   Ionic-Conducting and Robust Multilayered Solid Electrolyte Interphases for Greatly Improved Rate and Cycling Capabilities of Sodium Ion Full Cells [J].
Yuan, Haocheng ;
Ma, Fengxin ;
Wei, Xianbin ;
Lan, Jin-Le ;
Liu, Yuan ;
Yu, Yunhua ;
Yang, Xiaoping ;
Park, Ho Seok .
ADVANCED ENERGY MATERIALS, 2020, 10 (37)
[44]   3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries [J].
Yuan, Tianci ;
Wang, Yanxia ;
Zhang, Jiexin ;
Pu, Xiangjun ;
Ai, Xinping ;
Chen, Zhongxue ;
Yang, Hanxi ;
Cao, Yuliang .
NANO ENERGY, 2019, 56 :160-168
[45]   Low-Cost Zinc Substitution of Iron-Based Prussian Blue Analogs as Long Lifespan Cathode Materials for Fast Charging Sodium-Ion Batteries [J].
Zhang, Hang ;
Peng, Jian ;
Li, Lin ;
Zhao, Yanan ;
Gao, Yun ;
Wang, Jiazhao ;
Cao, Yuliang ;
Dou, Shixue ;
Chou, Shulei .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (02)
[46]   Organic Cathode Materials for Sodium-Ion Batteries: From Fundamental Research to Potential Commercial Application [J].
Zhang, Hang ;
Gao, Yun ;
Liu, Xiao-Hao ;
Yang, Zhuo ;
He, Xiang-Xi ;
Li, Li ;
Qiao, Yun ;
Chen, Wei-Hua ;
Zeng, Rong-Hua ;
Wang, Yong ;
Chou, Shu-Lei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)
[47]   Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries [J].
Zhang, Wei ;
Wu, Yulun ;
Xu, Zhenming ;
Li, Huangxu ;
Xu, Ming ;
Li, Jianwei ;
Dai, Yuhang ;
Zong, Wei ;
Chen, Ruwei ;
He, Liang ;
Zhang, Zhian ;
Brett, Dan J. L. ;
He, Guanjie ;
Lai, Yanqing ;
Parkin, Ivan P. .
ADVANCED ENERGY MATERIALS, 2022, 12 (25)
[48]   Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes [J].
Zhao, Chenglong ;
Yao, Zhenpeng ;
Wang, Qidi ;
Li, Haifeng ;
Wang, Jianlin ;
Liu, Ming ;
Ganapathy, Swapna ;
Lu, Yaxiang ;
Cabana, Jordi ;
Li, Baohua ;
Bai, Xuedong ;
Aspuru-Guzik, Alan ;
Wagemaker, Marnix ;
Chen, Liquan ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5742-5750
[49]   Micro/Nano Na3V2(PO4)3/N-Doped Carbon Composites with a Hierarchical Porous Structure for High-Rate Pouch-Type Sodium-Ion Full-Cell Performance [J].
Zhao, Lina ;
Zhao, Hailei ;
Wang, Jie ;
Zhang, Yang ;
Li, Zhaolin ;
Du, Zhihong ;
Swierczek, Konrad ;
Hou, Yanglong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) :8445-8454
[50]   Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a High-Energy-Density Cathode for Sodium-Ion Batteries [J].
Zhao, Yongjie ;
Gao, Xiangwen ;
Gao, Hongcai ;
Jin, Haibo ;
Goodenough, John B. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (10)