HIERARCHY OF CURVES WITH WEAKLY CONFLUENT MAPS

被引:0
|
作者
Illanes, Alejandro [1 ]
Martinez-de-la-Vega, Veronica [1 ]
Martinez-Montejano, Jorge M. [2 ]
Michalik, Daria [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad De Mexico 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Ciudad De Mexico 04510, Mexico
[3] Jan Kochanowski Univ, Dept Math, PL-25406 Kielce, Poland
关键词
continuum; confluent; dendrite; Gehman dendrite; monotone; universal dendrite; weakly confluent; CLASSIFICATION; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given continua X,Y and a class F of maps between continua, define X >= Y-F if there exists an onto map f : X -> Y belonging to F. A map f : X -> Y is weakly confluent if for each subcontinuum B of Y, there exists a subcontinuum A of X such that f(A) =B. In this paper we consider the class W of weakly confluent maps. We study the hierarchy of curves with respect to the partial order <=(W). Two continua X and Y are W-equivalent provided that X <= WY and Y <=(W) X. A continuum X is W-isolated provided that the following implication holds: if Y is a continuum and X and Y are W-equivalent, then X and Yare homeomorphic. Among other results, (a) we study how the class of dendrites with finite set of ramification points behaves under <=(W),(b) using <=(W), we compare dendrites with other curves, (c) we characterize W-isolated finite graphs.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] HIERARCHY OF CURVES WITH WEAKLY CONFLUENT MAPS
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    Martinez-Montejano, Jorge M.
    Michalik, Daria
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 241 - 255
  • [3] Monotone and weakly confluent set-valued functions and their inverse limits
    Kelly, James P.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 486 - 500
  • [4] EXACTLY (N,1) AND WEAKLY CONFLUENT-MAPPINGS ON GENERALIZED GRAPHS
    MIKLOS, S
    HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (03): : 429 - 434
  • [5] Weakly Whitney preserving maps
    Espinoza, Benjamin
    Matsuhashi, Eiichi
    TOPOLOGY AND ITS APPLICATIONS, 2019, 262 : 90 - 108
  • [6] ON THE FREUDENTHAL EXTENSIONS OF CONFLUENT PROPER MAPS
    Charatonik, Wlodzimierz J.
    Fernandez-Bayort, Tomas
    Quintero, Antonio
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (03): : 963 - 989
  • [7] Homotopic properties of confluent maps in the proper category
    Fernandez-Bayort, T.
    Quintero, A.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 2960 - 2970
  • [8] Hereditarily weakly confluent mappings onto S1
    Davis, JF
    Nadler, SB
    HOUSTON JOURNAL OF MATHEMATICS, 2000, 26 (04): : 693 - 720
  • [9] A hierarchy of maps between compacta
    Bankston, P
    JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (04) : 1628 - 1644
  • [10] Weakly Quasisymmetric Maps and Uniform Spaces
    Li, Yaxiang
    Vuorinen, Matti
    Zhou, Qingshan
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (04) : 689 - 715