Fundamental strengthening mechanisms of ordered gradient nanotwinned metals

被引:3
作者
Cheng, Zhao [1 ]
Lu, Lei [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
metallic material; ordered design; nanotwin units; trans-scale; strengthening mechanisms; DEFORMATION MECHANISMS; DUCTILITY SYNERGY; FLOW-STRESS; TENSILE; PLASTICITY; BEHAVIOR; ORIENTATION; MICROSTRUCTURE; DISLOCATIONS; DEPENDENCE;
D O I
10.1007/s12274-023-6124-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ordered structures with functional units offer the potential for enhanced performance in metallic materials. Among these structures, gradient nanotwinned (GNT) microstructures demonstrate excellent controllability. This paper provides a comprehensive review of the current state-of-the-art studies on GNT structures, encompassing various aspects such as design strategies, mechanical properties characterization, spatially gradient strain evolution analysis, and the significant role of geometrically necessary dislocations (GNDs). The primary objective is to systematically unravel the fundamental strengthening mechanisms by gaining an in-depth understanding of the deformation behavior of nanotwinned units. Through this work, we aim to contribute to the broader field of materials science by consolidating knowledge and providing insights for the development of novel metallic materials with enhanced properties and tailored performance characteristics.
引用
收藏
页码:12430 / 12437
页数:8
相关论文
共 68 条
[21]   Mechanism-based strain gradient plasticity - I. Theory [J].
Gao, H ;
Huang, Y ;
Nix, WD ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1999, 47 (06) :1239-1263
[22]   Tailoring Nanostructured, Graded, and Particle-Reinforced Al Laminates by Accumulative Roll Bonding [J].
Goeken, Mathias ;
Hoeppel, Heinz Werner .
ADVANCED MATERIALS, 2011, 23 (22-23) :2663-2668
[23]   Interface affected zone for optimal strength and ductility in heterogeneous laminate [J].
Huang, C. X. ;
Wang, Y. F. ;
Ma, X. L. ;
Yin, S. ;
Hoeppel, H. W. ;
Goeken, M. ;
Wu, X. L. ;
Gao, H. J. ;
Zhu, Y. T. .
MATERIALS TODAY, 2018, 21 (07) :713-719
[24]   Role of layered structure in ductility improvement of layered Ti-Al metal composite [J].
Huang, Meng ;
Xu, Chao ;
Fan, Guohua ;
Maawad, Emad ;
Gan, Weimin ;
Geng, Lin ;
Lin, Fengxiang ;
Tang, Guangze ;
Wu, Hao ;
Du, Yan ;
Li, Danyang ;
Miao, Kesong ;
Zhang, Tongtong ;
Yang, Xuesong ;
Xia, Yiping ;
Cao, Guojian ;
Kang, Huijun ;
Wang, Tongmin ;
Xiao, Tiqiao ;
Xie, Honglan .
ACTA MATERIALIA, 2018, 153 :235-249
[25]   Dislocation structures. Part I. Grain orientation dependence [J].
Huang, X. ;
Winther, G. .
PHILOSOPHICAL MAGAZINE, 2007, 87 (33) :5189-5214
[26]   Strength-ductility synergy in heterogeneous-structured metals and alloys [J].
Jiang, Jiaxi ;
Chen, Zekun ;
Ma, Huachun ;
Xing, Hanzheng ;
Li, Xiaoyan .
MATTER, 2022, 5 (08) :2430-2433
[27]   Deformation behavior of lightweight clad sheet: Experiment and modeling [J].
Kim, Yongju ;
Gu, Gang Hee ;
Kim, Rae Eon ;
Seo, Min Hong ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 852
[28]   THE MODELING OF DISLOCATION PATTERNS [J].
KUBIN, LP ;
CANOVA, G .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 27 (08) :957-962
[29]   Mechanical behavior of nanocrystalline metals and alloys [J].
Kumar, KS ;
Van Swygenhoven, H ;
Suresh, S .
ACTA MATERIALIA, 2003, 51 (19) :5743-5774
[30]   Insight into microstructure-sensitive elastic strain concentrations from integrated computational modeling and digital image correlation [J].
Latypov, Marat, I ;
Stinville, Jean-Charles ;
Mayeur, Jason R. ;
Hestroffer, Jonathan M. ;
Pollock, Tresa M. ;
Beyerlein, Irene J. .
SCRIPTA MATERIALIA, 2021, 192 :78-82