2D Exotic Optical Lattice via a Digital-Coding Circular Airy Beam

被引:0
作者
Sun, Peisheng [1 ]
Chen, Lai [1 ]
Pan, Bailiang [1 ]
Ye, Linhua [1 ]
Wang, Chengfeng [2 ]
Zhang, Junxiang [1 ,3 ]
Wang, Li-Gang [1 ,3 ]
机构
[1] Zhejiang Univ, Sch Phys, Hangzhou 310027, Peoples R China
[2] Sinri Digital City Technol Co Ltd, Engn Technol Off, Hangzhou 310030, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
来源
ADVANCED PHOTONICS RESEARCH | 2024年 / 5卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
2D optical lattices; circular Airy beam; digital coding; spatial crosstalk; structured light; ANGULAR-MOMENTUM SPECTRUM; QUANTUM GASES; DIFFRACTION; SYMMETRY; MANIPULATION; PROPERTY; SOLITONS; PATTERN; MATTER; WAVES;
D O I
10.1002/adpr.202300280
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical lattices have been widely used from classical to quantum physics. The tunable and scalable fabrication of lattices would be of great significance in lattice-based multipartite applications. This work demonstrates first that a circular Airy beam (CAB), which has the peculiar properties of self-healing and abrupt autofocusing, can be used to generate two-dimensional (2D) optical lattices in propagation when encoded by a programmable spatial mask, resulting in the formation of large-scale and tunable optical lattices with both axis and axial symmetry, and even high-orbital kaleidoscope shapes. The efficient diffraction of CAB during the spatial crosstalk with the mask enables the realization of tunable lattices with rich periodicity and complexity. The study shows a flexible method to manipulate lattices with large-scale and versatile structures for potential applications in integrated and scalable optical and photonic devices. Fabrication of the tunable two-dimensional (2D) exotic optical lattice utilizes a single digital-coding circular Airy beam. The study demonstrates a flexible method to steer optical lattices with axis, axial symmetry, and even high orbital kaleidoscope structures for potential applications in integrated and scalable optical and photonic devices.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:7
相关论文
共 65 条
  • [1] Symmetry in the diffraction of beams carrying orbital angular momentum
    Ambuj, Anindya
    Walla, Emily
    Andaloro, Sophia
    Nomoto, Sean
    Vyas, Reeta
    Singh, Surendra
    [J]. PHYSICAL REVIEW A, 2019, 99 (01)
  • [2] Paraxial group
    Bandres, Miguel A.
    Guizar-Sicairos, Manuel
    [J]. OPTICS LETTERS, 2009, 34 (01) : 13 - 15
  • [3] Ultracold quantum gases in optical lattices
    Bloch, I
    [J]. NATURE PHYSICS, 2005, 1 (01) : 23 - 30
  • [4] Propagation of sharply autofocused ring Airy Gaussian vortex beams
    Chen, Bo
    Chen, Chidao
    Peng, Xi
    Peng, Yulian
    Zhou, Meiling
    Deng, Dongmei
    [J]. OPTICS EXPRESS, 2015, 23 (15): : 19288 - 19298
  • [5] Experimental observation and manipulation of optical tornado waves
    Chen, Lai
    Wang, Li-Gang
    [J]. OPTICS LETTERS, 2022, 47 (08) : 2109 - 2112
  • [6] Self-healing property of focused circular Airy beams
    Chen, Lai
    Wen, Jisen
    Sun, Dong
    Wang, Li-Gang
    [J]. OPTICS EXPRESS, 2020, 28 (24): : 36516 - 36526
  • [7] Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics
    Chremmos, Ioannis D.
    Chen, Zhigang
    Christodoulides, Demetrios N.
    Efremidis, Nikolaos K.
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [9] Observation of a triangular-lattice pattern in nonlinear wave mixing with optical vortices
    da Silva, B. Pinheiro
    dos Santos, G. H.
    de Oliveira, A. G.
    da Silva, N. Rubiano
    Buono, W. T.
    Gomes, R. M.
    Soares, W. C.
    Jesus-Silva, A. J.
    Fonseca, E. J. S.
    Ribeiro, P. H. Souto
    Khoury, A. Z.
    [J]. OPTICA, 2022, 9 (08): : 908 - 912
  • [10] Loss-Assisted Metasurface at an Exceptional Point
    Dong, Shaohua
    Hu, Guangwei
    Wang, Qiang
    Jia, Yuxiang
    Zhang, Qing
    Cao, Guangtao
    Wang, Jiafu
    Chen, Shuqing
    Fan, Dianyuan
    Jiang, Weixiang
    Li, Ying
    Alu, Andrea
    Qiu, Cheng-Wei
    [J]. ACS PHOTONICS, 2020, 7 (12) : 5321 - 5327