Long-Range Correlation Supervision for Land-Cover Classification From Remote Sensing Images

被引:2
作者
Yu, Dawen [1 ]
Ji, Shunping [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Correlation; Transformers; Remote sensing; Feature extraction; Semantics; Semantic segmentation; Computational modeling; Convolutional neural network (CNN); land-cover classification; long-range correlation supervision; remote sensing images; semantic segmentation; SEMANTIC SEGMENTATION;
D O I
10.1109/TGRS.2023.3324706
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Long-range dependency modeling has been widely considered in modern deep learning-based semantic segmentation methods, especially those designed for large-size remote sensing images, to compensate the intrinsic locality of standard convolutions. However, in previous studies, the long-range dependency, modeled with an attention mechanism or transformer model, has been based on unsupervised learning, instead of explicit supervision from the objective ground truth (GT). In this article, we propose a novel supervised long-range correlation method for land-cover classification, called the supervised long-range correlation network (SLCNet), which is shown to be superior to the currently used unsupervised strategies. In SLCNet, pixels sharing the same category are considered highly correlated and those having different categories are less relevant, which can be easily supervised by the category consistency information available in the GT semantic segmentation map. Under such supervision, the recalibrated features are more consistent for pixels of the same category and more discriminative for pixels of other categories, regardless of their proximity. To complement the detailed information lacking in the global long-range correlation, we introduce an auxiliary adaptive receptive field feature extraction (ARFE) module, parallel to the long-range correlation module in the encoder, to capture finely detailed feature representations for multisize objects in multiscale remote sensing images. In addition, we apply multiscale side-output supervision and a hybrid loss function as local and global constraints to further boost the segmentation accuracy. Experiments were conducted on three public remote sensing datasets (the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the DeepGlobe dataset). Compared with the advanced segmentation methods from the computer vision, medicine, and remote sensing communities, the proposed SLCNet method achieved state-of-the-art performance on all the datasets. The code will be made available at gpcv.whu.edu.cn/data.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Coastal Land Cover Classification of High-Resolution Remote Sensing Images Using Attention-Driven Context Encoding Network
    Chen, Jifa
    Chen, Gang
    Wang, Lizhe
    Fang, Bo
    Zhou, Ping
    Zhu, Mingjie
    SENSORS, 2020, 20 (24) : 1 - 22
  • [42] Land-cover classification with hyperspectral remote sensing image using CNN and spectral band selection
    Solomon, A. Arun
    Agnes, S. Akila
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [43] Multi-spectral remote sensing land-cover classification based on deep learning methods
    Tongdi He
    Shengxin Wang
    The Journal of Supercomputing, 2021, 77 : 2829 - 2843
  • [44] TRANSFORMER MODELS FOR MULTI-TEMPORAL LAND COVER CLASSIFICATION USING REMOTE SENSING IMAGES
    Voelsen, M.
    Lauble, S.
    Rottensteiner, F.
    Heipke, C.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 981 - 990
  • [45] Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss
    Chicchon, Miguel
    Trujillo, Francisco James Leon
    Sipiran, Ivan
    Madrid, Ricardo
    IEEE ACCESS, 2025, 13 : 59007 - 59019
  • [46] Land-cover Classification in SAR Images using Dictionary Learning
    Aktas, Gizem
    Bak, Cagdas
    Nar, Fatih
    Sen, Nigar
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [47] Cross-Domain Land Cover Classification of Remote Sensing Images Based on Full-Level Domain Adaptation
    Meng, Yuke
    Yuan, Zhanliang
    Yang, Jian
    Liu, Peizhuo
    Yan, Jian
    Zhu, Hongbo
    Ma, Zhigao
    Jiang, Zhenzhao
    Zhang, Zhouwei
    Mi, Xiaofei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11434 - 11450
  • [48] Land-cover classification and forest biophysical retrieval from SAR
    Dobson, MC
    Bergen, K
    GREAT LAKES, GREAT FORESTS, PROCEEDINGS, 1999, : 98 - 106
  • [49] A Novel Approach to Land-Cover Maps Updating in Complex Scenarios based on multitemporal Remote Sensing Images
    Bahirat, K.
    Bovolo, F.
    Bruzzone, L.
    Chaudhuri, S.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [50] Robust Land Cover Classification With Local–Global Information Decoupling to Address Remote Sensing Anomalous Data
    Xiao, Jianbo
    Cheng, Taotao
    Chen, Deliang
    Chen, Hui
    Li, Ning
    Lu, Yanyan
    Cheng, Liang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5774 - 5789