Long-Range Correlation Supervision for Land-Cover Classification From Remote Sensing Images

被引:2
|
作者
Yu, Dawen [1 ]
Ji, Shunping [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Correlation; Transformers; Remote sensing; Feature extraction; Semantics; Semantic segmentation; Computational modeling; Convolutional neural network (CNN); land-cover classification; long-range correlation supervision; remote sensing images; semantic segmentation; SEMANTIC SEGMENTATION;
D O I
10.1109/TGRS.2023.3324706
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Long-range dependency modeling has been widely considered in modern deep learning-based semantic segmentation methods, especially those designed for large-size remote sensing images, to compensate the intrinsic locality of standard convolutions. However, in previous studies, the long-range dependency, modeled with an attention mechanism or transformer model, has been based on unsupervised learning, instead of explicit supervision from the objective ground truth (GT). In this article, we propose a novel supervised long-range correlation method for land-cover classification, called the supervised long-range correlation network (SLCNet), which is shown to be superior to the currently used unsupervised strategies. In SLCNet, pixels sharing the same category are considered highly correlated and those having different categories are less relevant, which can be easily supervised by the category consistency information available in the GT semantic segmentation map. Under such supervision, the recalibrated features are more consistent for pixels of the same category and more discriminative for pixels of other categories, regardless of their proximity. To complement the detailed information lacking in the global long-range correlation, we introduce an auxiliary adaptive receptive field feature extraction (ARFE) module, parallel to the long-range correlation module in the encoder, to capture finely detailed feature representations for multisize objects in multiscale remote sensing images. In addition, we apply multiscale side-output supervision and a hybrid loss function as local and global constraints to further boost the segmentation accuracy. Experiments were conducted on three public remote sensing datasets (the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the DeepGlobe dataset). Compared with the advanced segmentation methods from the computer vision, medicine, and remote sensing communities, the proposed SLCNet method achieved state-of-the-art performance on all the datasets. The code will be made available at gpcv.whu.edu.cn/data.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images
    Wang, Xuan
    Zhang, Yue
    Lei, Tao
    Wang, Yingbo
    Zhai, Yujie
    Nandi, Asoke K.
    REMOTE SENSING, 2022, 14 (19)
  • [2] FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote Sensing Images
    Sang, Qianbo
    Zhuang, Yin
    Dong, Shan
    Wang, Guanqun
    Chen, He
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1057 - 1061
  • [3] Land Cover Classification of Resources Survey Remote Sensing Images Based on Segmentation Model
    Fan, Zhenyu
    Zhan, Tao
    Gao, Zhichao
    Li, Rui
    Liu, Yao
    Zhang, Lianzhi
    Jin, Zixiang
    Xu, Supeng
    IEEE ACCESS, 2022, 10 : 56267 - 56281
  • [4] RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentation
    Xu, Rongtao
    Wang, Changwei
    Zhang, Jiguang
    Xu, Shibiao
    Meng, Weiliang
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1052 - 1064
  • [5] Bidirectional Grid Fusion Network for Accurate Land Cover Classification of High-Resolution Remote Sensing Images
    Wang, Yupei
    Shi, Hao
    Zhuang, Yin
    Sang, Qianbo
    Chen, Liang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5508 - 5517
  • [6] Land-Cover Classification With Time-Series Remote Sensing Images by Complete Extraction of Multiscale Timing Dependence
    Yan, Jining
    Liu, Jingwei
    Wang, Lizhe
    Liang, Dong
    Cao, Qingcheng
    Zhang, Wanfeng
    Peng, Jianyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1953 - 1967
  • [7] An Adversarial Domain Adaptation Framework With KL-Constraint for Remote Sensing Land Cover Classification
    Liu, Mengxi
    Zhang, Pengyuan
    Shi, Qian
    Liu, Mengwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Local and Long-Range Collaborative Learning for Remote Sensing Scene Classification
    Zhao, Maofan
    Meng, Qingyan
    Zhang, Linlin
    Hu, Xinli
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images
    Shankar, B. Uma
    Meher, Saroj K.
    Ghosh, Ashish
    APPLIED SOFT COMPUTING, 2011, 11 (03) : 2999 - 3011
  • [10] MKANet: An Efficient Network with Sobel Boundary Loss for Land-Cover Classification of Satellite Remote Sensing Imagery
    Zhang, Zhiqi
    Lu, Wen
    Cao, Jinshan
    Xie, Guangqi
    REMOTE SENSING, 2022, 14 (18)