☆-CONFORMAL RICCI SOLITONS ON ALMOST COKAHLER MANIFOLDS

被引:1
作者
Mandal, Tarak [1 ]
Sarkar, Avijit [1 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 03期
关键词
Almost coKahler manifolds; (kappa; mu)-nullity distribution; infinitesimal contact transformation; star-Ricci tensors; Ricci solitons; conformal Ricci solitons; CONTACT;
D O I
10.4134/CKMS.c220145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main intention of the current paper is to characterize certain properties of star-conformal Ricci solitons on non-coKahler (kappa, mu)-almost coKahler manifolds. At first, we find that there does not exist star-conformal Ricci soliton if the potential vector field is the Reeb vector field theta. We also prove that the non-coKahler (kappa, mu)-almost coKahler manifolds admit star-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist star-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.
引用
收藏
页码:865 / 880
页数:16
相关论文
共 32 条
[1]   A CLASS OF phi-RECURRENT ALMOST COSYMPLECTIC SPACE [J].
Balkan, Yavuz Selim ;
Uddin, Siraj ;
Alkhaldi, Ali H. .
HONAM MATHEMATICAL JOURNAL, 2018, 40 (02) :293-304
[2]  
Basu N., 2015, GLOB J ADV RES CLASS, V4, P15
[3]   Ricci solitons in manifolds with quasi-constant curvature [J].
Bejan, Cornelia Livia ;
Crasmareanu, Mircea .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (01) :235-243
[4]  
Blair D. E., 1967, J DIFFER GEOM, V1, P331
[5]  
Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3
[6]   CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION [J].
BLAIR, DE ;
KOUFOGIORGOS, T .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :189-214
[7]   *-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds [J].
Dai, Xinxin ;
Zhao, Yan ;
De, Uday Chand .
OPEN MATHEMATICS, 2019, 17 :874-882
[8]  
De U. C., Ricci-Yamabe solitons on almost coKahler manifolds
[9]   A note on almost co-Kahler manifolds [J].
De, Uday Chand ;
Chaubey, Sudhakar K. ;
Suh, Young Jin .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (10)