DIAGONAL-SCHUR COMPLEMENTS OF NEKRASOV MATRICES

被引:0
作者
Wang, Shiyun [1 ]
Li, Qi [1 ]
Sun, Xu [1 ]
Lyu, Zhen-Hua [1 ]
机构
[1] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Nekrasov matrix; Diagonal-Schur complement; Sigma-Nekrasov matrix; H-MATRICES; DOMINANT MATRICES; NORM BOUNDS; INVERSE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
he Schur and diagonal-Schur complements are important tools in many fields. It was revealed that the diagonal-Schur complements of Nekrasov matrices with respect to the index set{1} are Nekrasov matrices by Cvetkovi c and Nedovi c [Appl. Math. Comput.,208:225-230, 2009]. In this paper, we prove that the diagonal-Schur complements of Nekrasov matrices with respect to any index set are Nekrasov matrices. Similar results hold for Sigma-Nekrasov matrices. We also present some results on Nekrasov diagonally dominant degrees. Numerical examples are given to verify the correctness of the results.
引用
收藏
页码:539 / 555
页数:17
相关论文
共 23 条
[1]  
Bailey D.W., 1969, Linear Algebra Appl., V2, P303
[2]  
Berman A., 1994, Nonnegative Matrices in the Mathematical Sciences
[3]  
Chang M, 2016, J. Shangqiu Vocation. Tech. Coll., V5, P1
[4]   Further results on H-matrices and their Schur complements [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Kovacevic, Maja ;
Szulc, Tomasz .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :506-510
[5]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[6]   Special H-matrices and their Schur and diagonal-Schur complements [J].
Cvetkovic, Ljiljana ;
Nedovic, Maja .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) :225-230
[7]  
Horn R. A., 2013, Matrix analysis, Vsecond
[8]   On Schur complements of Dashnic-Zusmanovich type matrices [J].
Li, Chaoqian ;
Huang, Zhengyu ;
Zhao, Jianxing .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) :4071-4096
[9]   On diagonal-Schur complements of block diagonally dominant matrices [J].
Li, Yao-tang ;
Ouyang, Shun-ping ;
Cao, Shu-juan ;
Wang, Rui-Wu .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) :1383-1392
[10]   Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices [J].
Liu, Jianzhou ;
Li, Jicheng ;
Huang, Zhuohong ;
Kong, Xu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) :1009-1030