Space-time behavior of the compressible Navier-Stokes equations with hyperbolic heat conduction

被引:2
作者
Liu, Mengqian [1 ]
Wu, Zhigang [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
OPTIMAL CONVERGENCE-RATES; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; GREENS-FUNCTION; DECAY; THERMOELASTICITY; SYSTEMS; WAVE;
D O I
10.1063/5.0146449
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider compressible Navier-Stokes equations with hyperbolic heat conduction in R-3. A space-time description of the classical solution is given when the initial perturbation is suitable small. The result implies that all of the unknowns obey the generalized Huygens' principle as the classical compressible Navier-Stokes equations in Liu and Wang [Commun. Math. Phys. 196, 145-173 (1998)]. Additionally, we show that the decay of the flux q is faster than the other unknowns.
引用
收藏
页数:21
相关论文
共 36 条
[1]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[2]   Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical L p Framework [J].
Danchin, Raphael ;
Xu, Jiang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :53-90
[3]   Pointwise structure of a radiation hydrodynamic model in one-dimension [J].
Deng, Shijin ;
Yang, Xiongfeng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) :3432-3456
[4]   GREEN'S FUNCTION AND POINTWISE CONVERGENCE FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Deng, Shijin ;
Yu, Shih-Hsien .
QUARTERLY OF APPLIED MATHEMATICS, 2017, 75 (03) :433-503
[5]   Solving the non-isentropic Navier-Stokes equations in odd space dimensions: The Green function method [J].
Du, Linglong ;
Wu, Zhigang .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
[6]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[7]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[8]   GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM [J].
Duan, Renjun .
ANALYSIS AND APPLICATIONS, 2012, 10 (02) :133-197
[9]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[10]   Decay of Dissipative Equations and Negative Sobolev Spaces [J].
Guo, Yan ;
Wang, Yanjin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2165-2208