Automated Segmentation of Sacral Chordoma and Surrounding Muscles Using Deep Learning Ensemble

被引:6
作者
Boussioux, Leonard [1 ,2 ,3 ]
Ma, Yu [1 ,2 ]
Thomas, Nancy Knight [1 ,2 ]
Bertsimas, Dimitris [1 ,2 ]
Shusharina, Nadya [4 ,5 ]
Pursley, Jennifer [4 ,5 ]
Chen, Yen -Lin [4 ,5 ]
DeLaney, Thomas F. [5 ]
Qian, Jack [4 ,5 ]
Bortfeld, Thomas [4 ,5 ]
机构
[1] MIT, Operat Res Ctr, Cambridge, MA 02139 USA
[2] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[3] Univ Washington, Michael G Foster Sch Business, Dept Informat Syst & Operat Management, Seattle, WA 98195 USA
[4] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA USA
[5] Harvard Med Sch, Boston, MA USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2023年 / 117卷 / 03期
关键词
NEURAL-NETWORKS; HEAD; ORGANS;
D O I
10.1016/j.ijrobp.2023.03.078
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: The manual segmentation of organ structures in radiation oncology treatment planning is a time-consuming and highly skilled task, particularly when treating rare tumors like sacral chordomas. This study evaluates the performance of auto-mated deep learning (DL) models in accurately segmenting the gross tumor volume (GTV) and surrounding muscle structures of sacral chordomas. Methods and Materials: An expert radiation oncologist contoured 5 muscle structures (gluteus maximus, gluteus medius, glu-teus minimus, paraspinal, piriformis) and sacral chordoma GTV on computed tomography images from 48 patients. We trained 6 DL auto-segmentation models based on 3-dimensional U-Net and residual 3-dimensional U-Net architectures. We then imple-mented an average and an optimally weighted average ensemble to improve prediction performance. We evaluated algorithms with the average and standard deviation of the volumetric Dice similarity coefficient, surface Dice similarity coefficient with 2 -and 3-mm thresholds, and average symmetric surface distance. One independent expert radiation oncologist assessed the clinical viability of the DL contours and determined the necessary amount of editing before they could be used in clinical practice. Results: Quantitatively, the ensembles performed the best across all structures. The optimal ensemble (volumetric Dice simi-larity coefficient, average symmetric surface distance) was (85.5 +/- 6.4, 2.6 +/- 0.8; GTV), (94.4 +/- 1.5, 1.0 +/- 0.4; gluteus maxi-mus), (92.6 +/- 0.9, 0.9 +/- 0.1; gluteus medius), (85.0 +/- 2.7, 1.1 +/- 0.3; gluteus minimus), (92.1 +/- 1.5, 0.8 +/- 0.2; paraspinal), and (78.3 +/- 5.7, 1.5 +/- 0.6; piriformis). The qualitative evaluation suggested that the best model could reduce the total muscle and tumor delineation time to a 19-minute average. Conclusions: Our methodology produces expert-level muscle and sacral chordoma tumor segmentation using DL and ensemble modeling. It can substantially augment the streamlining and accuracy of treatment planning and represents a critical step toward automated delineation of the clinical target volume in sarcoma and other disease sites. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 749
页数:12
相关论文
共 27 条
[1]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, 10.48550/arXiv.1811.02629, DOI 10.48550/ARXIV.1811.02629]
[2]   Definitive high-dose, proton-based radiation for unresected mobile spine and sacral chordomas [J].
Banfield, Walter ;
Ioakeim-Ioannidou, Myrsini ;
Goldberg, Saveli ;
Ahmed, Soha ;
Schwab, Joseph H. ;
Cote, Gregory M. ;
Choy, Edwin ;
Shin, John H. ;
Hornicek, Francis J. ;
Liebsch, Norbert J. ;
Chen, Yen -Lin E. ;
MacDonald, Shannon M. ;
DeLaney, Thomas F. .
RADIOTHERAPY AND ONCOLOGY, 2022, 171 :139-145
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   A recursive ensemble organ segmentation (REOS) framework: application in brain radiotherapy [J].
Chen, Haibin ;
Lu, Weiguo ;
Chen, Mingli ;
Zhou, Linghong ;
Timmerman, Robert ;
Tu, Dan ;
Nedzi, Lucien ;
Wardak, Zabi ;
Jiang, Steve ;
Zhen, Xin ;
Gu, Xuejun .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (02)
[5]   Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation [J].
Daisne, Jean-Francois ;
Blumhofer, Andreas .
RADIATION ONCOLOGY, 2013, 8
[6]   Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer [J].
Duc, Albert K. Hoang ;
Eminowicz, Gemma ;
Mendes, Ruheena ;
Wong, Swee-Ling ;
McClelland, Jamie ;
Modat, Marc ;
Cardoso, M. Jorge ;
Mendelson, Alex F. ;
Veiga, Catarina ;
Kadir, Timor ;
D'Souza, Derek ;
Ourselin, Sebastien .
MEDICAL PHYSICS, 2015, 42 (09) :5027-5034
[7]  
Feng X, 2018, Arxiv, DOI arXiv:1812.01049
[8]  
Fritscher Karl, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P158, DOI 10.1007/978-3-319-46723-8_19
[9]   Fully Automated Delineation of Gross Tumor Volume for Head and Neck Cancer on PET-CT Using Deep Learning: A Dual-Center Study [J].
Huang, Bin ;
Chen, Zhewei ;
Wu, Po-Man ;
Ye, Yufeng ;
Feng, Shi-Ting ;
Wong, Ching-Yee Oliver ;
Zheng, Liyun ;
Liu, Yong ;
Wang, Tianfu ;
Li, Qiaoliang ;
Huang, Bingsheng .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[10]   Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks [J].
Ibragimov, Bulat ;
Xing, Lei .
MEDICAL PHYSICS, 2017, 44 (02) :547-557