Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data

被引:6
作者
Zhang, Jianyong [1 ]
Zhao, Yanling [2 ]
Hu, Zhenqi [3 ]
Xiao, Wu [4 ]
机构
[1] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[3] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
[4] Zhejiang Univ, Dept Land Management, Hangzhou 310058, Peoples R China
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 08期
关键词
biomass estimation; unmanned aircraft system; vegetation index; canopy height model; growing degree days; ABOVEGROUND BIOMASS; VEGETATION INDEXES; WINTER-WHEAT; LEAF-AREA; CROPLAND; MAIZE; YIELD; LAND; RGB;
D O I
10.3390/agriculture13081621
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rapid estimation of above-ground biomass (AGB) with high accuracy is essential for monitoring crop growth status and predicting crop yield. Recently, remote sensing techniques using unmanned aerial systems (UASs) have exhibited great potential in obtaining structural information about crops and identifying spatial heterogeneity. However, methods of data fusion of different factors still need to be explored in order to enhance the accuracy of their estimates. Therefore, the objective of this study was to investigate the combined metrics of different variables (spectral, structural and meteorological factors) for AGB estimation of wheat using UAS multispectral data. UAS images were captured on two selected growing dates at a typical reclaimed cropland in the North China Plain. The spectral response was determined using the highly correlated vegetation index (VI). A structural metric, the canopy height model (CHM), was produced using UAS-based multispectral images. The measure of growing degree days (GDD) was selected as a meteorological proxy. Subsequently, a structurally-meteorologically weighted canopy spectral response metric (SM-CSRM) was derived by the pixel-level fusion of CHM, GDD and VI. Both correlation coefficient analysis and simple function fitting were implemented to explore the highest correlation between the measured AGB and each proposed metric. The optimal regression model was built for AGB prediction using leave-one-out cross-validation. The results showed that the proposed SM-CSRM generally improved the correlation between wheat AGB and various VIs and can be used for estimating the wheat AGB. Specifically, the combination of MERIS terrestrial chlorophyll index (MTCI), vegetation-masked CHM (mCHM) and normalized GDD (nGDD) achieved an optimal accuracy (R-2 = 0.8069, RMSE = 0.1667 kg/m(2), nRMSE = 19.62%) through the polynomial regression method. This improved the nRMSE by 3.44% compared to the predictor using MTCI similar to mCHM. Moreover, the pixel-level fusion method slightly enhanced the nRMSE by similar to 0.3% for predicted accuracy compared to the feature-level fusion method. In conclusion, this paper demonstrated that an SM-CSRM using pixel-level fusion with canopy spectral, structural and meteorological factors can obtain a good level of accuracy for wheat biomass prediction. This finding could benefit the assessment of reclaimed cropland or the monitoring of crop growth and field management in precision agriculture.
引用
收藏
页数:24
相关论文
共 33 条
[1]   Linking gene regulation, physiology, and plant biomass allocation in Andropogon gerardii in response to drought [J].
Avolio, Meghan L. ;
Hoffman, Ava M. ;
Smith, Melinda D. .
PLANT ECOLOGY, 2018, 219 (01) :1-15
[2]   Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring [J].
Ballesteros, R. ;
Ortega, J. F. ;
Hernandez, D. ;
del Campo, A. ;
Moreno, M. A. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 :66-75
[3]   FORETo: New software for reference evapotranspiration forecasting [J].
Ballesteros, Rocio ;
Fernado Ortega, Jose ;
Angel Moreno, Miguel .
JOURNAL OF ARID ENVIRONMENTS, 2016, 124 :128-141
[4]   Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV) [J].
Bhandari, Mahendra ;
Ibrahim, Amir M. H. ;
Xue, Qingwu ;
Jung, Jinha ;
Chang, Anjin ;
Rudd, Jackie C. ;
Maeda, Murilo ;
Rajan, Nithya ;
Neely, Haly ;
Landivar, Juan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 176
[5]   WHEAT EVOLUTION [J].
BREIMAN, A ;
GRAUR, D .
ISRAEL JOURNAL OF PLANT SCIENCES, 1995, 43 (02) :85-98
[6]   UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras [J].
Deng, Lei ;
Mao, Zhihui ;
Li, Xiaojuan ;
Hu, Zhuowei ;
Duan, Fuzhou ;
Yan, Yanan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 :124-136
[7]   Assessment of red-edge vegetation indices for crop leaf area index estimation [J].
Dong, Taifeng ;
Liu, Jiangui ;
Shang, Jiali ;
Qian, Budong ;
Ma, Baoluo ;
Kovacs, John M. ;
Walters, Dan ;
Jiao, Xianfeng ;
Geng, Xiaoyuan ;
Shi, Yichao .
REMOTE SENSING OF ENVIRONMENT, 2019, 222 :133-143
[8]   Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR [J].
Greaves, Heather E. ;
Vierling, Lee A. ;
Eitel, Jan U. H. ;
Boelman, Natalie T. ;
Magney, Troy S. ;
Prager, Case M. ;
Griffin, Kevin L. .
REMOTE SENSING OF ENVIRONMENT, 2015, 164 :26-35
[9]   The effect of harvest, mulching and low-dose fertilization of liquid digestate on above ground biomass yield and diversity of lower mountain semi-natural grasslands [J].
Hensgen, Frank ;
Buehle, Lutz ;
Wachendorf, Michael .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 216 :283-292
[10]   Reclaiming subsided land with Yellow River sediments: Evaluation of soil-sediment columns [J].
Hu, Zhenqi ;
Shao, Fang ;
McSweeney, Kevin .
GEODERMA, 2017, 307 :210-219