On Hardy-Hilbert-type inequalities with α-fractional derivatives

被引:0
|
作者
Ahmed, Marwa M. [1 ]
Hassanein, Wael S. [2 ]
Elsayed, Marwa Sh. [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
El-Deeb, Ahmed A. [7 ]
机构
[1] King Abdulaziz Univ, Fac Engn Girls Campus, Dept Elect & Comp Engn, Jeddah, Saudi Arabia
[2] King Abdulaziz Univ, Dept Ind Engn, Fac Engn, Jeddah, Saudi Arabia
[3] Inst Culture & Sci, Cairo 13759, Egypt
[4] Inst Space Sci, Bucharest, Romania
[5] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[6] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[7] Al Azhar Univ, Fac Sci, Dept Math, Cairo 11884, Egypt
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
Steffensen's inequality; dynamic inequality; dynamic integral; time scale; INTEGRAL-INEQUALITIES; TIME SCALES;
D O I
10.3934/math.20231126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current manuscript, new alpha delta dynamic Hardy-Hilbert inequalities on time scales are discussed. These inequalities combine and expand a number of continuous inequalities and their corresponding discrete analogues in the literature. We shall illustrate our results using Holder's inequality on time scales and a few algebraic inequalities.
引用
收藏
页码:22097 / 22111
页数:15
相关论文
共 50 条
  • [1] Gamma-Nabla Hardy-Hilbert-Type Inequalities on Time Scales
    Almarri, Barakah
    El-Deeb, Ahmed A.
    AXIOMS, 2023, 12 (05)
  • [2] On Some Important Dynamic Inequalities of Hardy-Hilbert-Type on Timescales
    El-Deeb, Ahmed A.
    Baleanu, Dumitru
    Cesarano, Clemente
    Abdeldaim, Ahmed
    SYMMETRY-BASEL, 2022, 14 (07):
  • [3] Novel Fractional Dynamic Hardy-Hilbert-Type Inequalities on Time Scales with Applications
    El-Deeb, Ahmed A.
    Awrejcewicz, Jan
    MATHEMATICS, 2021, 9 (22)
  • [4] (γ,a)-Nabla Reverse Hardy-Hilbert-Type Inequalities on Time Scales
    El-Deeb, Ahmed A.
    Baleanu, Dumitru
    Awrejcewicz, Jan
    SYMMETRY-BASEL, 2022, 14 (08):
  • [5] Important Study on the backward difference Dynamic Hardy-Hilbert-Type Inequalities on Time Scales with Applications
    El-Deeb, Ahmed A.
    Bazighifan, Omar
    Cesarano, Clemente
    SYMMETRY-BASEL, 2022, 14 (02):
  • [6] On an Extension of a Hardy-Hilbert-Type Inequality with Multi-Parameters
    Yang, Bicheng
    Rassias, Michael Th.
    Raigorodskii, Andrei
    MATHEMATICS, 2021, 9 (19)
  • [7] Some fractional dynamic inequalities on time scales of Hardy's type
    Sayed, A. G.
    Saker, S. H.
    Ahmed, A. M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (02): : 98 - 109
  • [8] On innovations of the multivariable fractional Hardy-type inequalities on time scales
    Akin, Lutfi
    Zeren, Yusuf
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02): : 415 - 422
  • [9] Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Askar, Sameh S.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2022, 7 (08): : 14099 - 14116
  • [10] Some Dynamic Inequalities Involving Hilbert and Hardy–Hilbert Operators with Kernels
    Donal O’Regan
    Haytham M. Rezk
    Samir H. Saker
    Results in Mathematics, 2018, 73