Neural Optimizer for Inverse Design of Complex-Modulated Hologram Implemented by Plasmonic Metasurfaces

被引:1
作者
Mao, Huade [1 ]
Yu, Yue [2 ]
Ren, Yu-Xuan [3 ]
Chan, Ka Yan [1 ]
Kang, Jiqiang [1 ,4 ]
Sun, Xiankai [2 ]
Lam, Edmund Y. [1 ]
Wong, Kenneth K. Y. [1 ,4 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam Rd, Hong Kong 999077, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong 999077, Peoples R China
[3] Fudan Univ, Inst Translat Brain Res, Shanghai Med Coll, Shanghai 200032, Peoples R China
[4] Adv Biomed Instrumentat Ctr, Hong Kong Sci Pk,Shatin, Hong Kong 999077, Peoples R China
来源
ADVANCED PHOTONICS RESEARCH | 2023年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
lensless modality; metasurfaces; neural networks;
D O I
10.1002/adpr.202200085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inverse design of a metasurface involves searching parameters in a high-dimensional space, which needs huge computational power. To ease the computational burden, neural network, a well-researched computer science stream, has demonstrated its potential usage in the inverse design of a photonic device. Many studies primarily focused on the nanostructure's configuration. However, the near field of a metasurface requires further optimization to achieve a desired holographic image at relieved computational power. Here, a convolutional neural network is developed to optimize the complex field of a computer-generated hologram, which can be fabricated into a metasurface to generate the desired holographic image upon lensless image projection. The neural optimizer can accelerate the design speed 400 times faster than theoretical computation and reduce the time complexity from O(n(4)) to O(n(2)). The neural optimizer has been compared against three other methods, e.g., gradient-based optimization, global genetic algorithm, and coupled-mode theory, to demonstrate a lowered error rate from more than 10% to 1.38% for the benchmark testing and a reduced running time from hours to near 1 s. The neural optimizer is envisioned to play a key role in lensless image projection and real-time metasurface pattern design.
引用
收藏
页数:7
相关论文
共 28 条
[1]   A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design [J].
An, Sensong ;
Fowler, Clayton ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Zhang, Hualiang .
ACS PHOTONICS, 2019, 6 (12) :3196-3207
[2]   Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control [J].
Bao, Yanjun ;
Yu, Ying ;
Xu, Haofei ;
Guo, Chao ;
Li, Juntao ;
Sun, Shang ;
Zhou, Zhang-Kai ;
Qiu, Cheng-Wei ;
Wang, Xue-Hua .
LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
[3]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+
[4]  
Chollet F., 2018, DEEP LEARNING PYTHON
[5]   Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency [J].
Ding, Xumin ;
Monticone, Francesco ;
Zhang, Kuang ;
Zhang, Lei ;
Gao, Dongliang ;
Burokur, Shah Nawaz ;
de Lustrac, Andre ;
Wu, Qun ;
Qiu, Cheng-Wei ;
Alu, Andrea .
ADVANCED MATERIALS, 2015, 27 (07) :1195-1200
[6]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[7]  
Goodman J.W., 2005, INTRO FOURIER OPTICS, V3rd
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Ioffe Sergey, 2015, Proceedings of Machine Learning Research, V37, P448, DOI DOI 10.5555/3045118.3045167
[10]   Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network [J].
Jiang, Jiaqi ;
Fan, Jonathan A. .
NANO LETTERS, 2019, 19 (08) :5366-5372