Underwater Image Enhancement via Triple-Branch Dense Block and Generative Adversarial Network

被引:3
|
作者
Yang, Peng [1 ,2 ]
He, Chunhua [1 ,2 ]
Luo, Shaojuan [3 ]
Wang, Tao [1 ,2 ]
Wu, Heng [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangdong Prov Key Lab Cyber Phys Syst, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Comp, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
generative adversarial network (GAN); underwater image enhancement; multiscale dense; residual learning; ADAPTIVE HISTOGRAM EQUALIZATION; COLOR CORRECTION;
D O I
10.3390/jmse11061124
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The complex underwater environment and light scattering effect lead to severe degradation problems in underwater images, such as color distortion, noise interference, and loss of details. However, the degradation problems of underwater images bring a significant challenge to underwater applications. To address the color distortion, noise interference, and loss of detail problems in underwater images, we propose a triple-branch dense block-based generative adversarial network (TDGAN) for the quality enhancement of underwater images. A residual triple-branch dense block is designed in the generator, which improves performance and feature extraction efficiency and retains more image details. A dual-branch discriminator network is also developed, which helps to capture more high-frequency information and guides the generator to use more global content and detailed features. Experimental results show that TDGAN is more competitive than many advanced methods from the perspective of visual perception and quantitative metrics. Many application tests illustrate that TDGAN can significantly improve the accuracy of underwater target detection, and it is also applicable in image segmentation and saliency detection.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network
    Guo, Yecai
    Li, Hanyu
    Zhuang, Peixian
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (03) : 862 - 870
  • [2] Underwater image enhancement via efficient generative adversarial network
    Qian, Xin
    Ge, Peng
    OPTICA APPLICATA, 2021, 51 (04) : 483 - 497
  • [3] Self-Adversarial Generative Adversarial Network for Underwater Image Enhancement
    Wang, Haiwen
    Yang, Miao
    Yin, Ge
    Dong, Jinnai
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 237 - 248
  • [4] Conditional generative adversarial network with dual-branch progressive generator for underwater image enhancement
    Lin, Peng
    Wang, Yafei
    Wang, Guangyuan
    Yan, Xiaohong
    Jiang, Guangqi
    Fu, Xianping
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 108
  • [5] DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device
    Qian, Jin
    Li, Hui
    Zhang, Bin
    Lin, Sen
    Xing, Xiaoshuang
    SENSORS, 2023, 23 (19)
  • [6] Underwater image enhancement based on conditional generative adversarial network
    Yang, Miao
    Hu, Ke
    Du, Yixiang
    Wei, Zhiqiang
    Sheng, Zhibin
    Hu, Jintong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 81 (81)
  • [7] Underwater image enhancement method based on the generative adversarial network
    Yu, Jin-Tao
    Jia, Rui-Sheng
    Gao, Li
    Yin, Ruo-Nan
    Sun, Hong-Mei
    Zheng, Yong-Guo
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (01)
  • [8] Underwater Image Enhancement Based on Conditional Generative Adversarial Network
    Jin Weipei
    Guo Jichang
    Qi Qing
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [9] Underwater image enhancement using a mixed generative adversarial network
    Mu, Delang
    Li, Heng
    Liu, Hui
    Dong, Ling
    Zhang, Guoyin
    IET IMAGE PROCESSING, 2023, 17 (04) : 1149 - 1160
  • [10] Underwater image enhancement using improved generative adversarial network
    Zhang, Tingting
    Li, Yujie
    Takahashi, Shinya
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (22):