Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation

被引:36
作者
Fernando, K. Ruwani M. [1 ]
Tsokos, Chris P. [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Brain tumor segmentation; Statistical modeling; Deep learning; Probabilistic deep learning; Medical imaging; CONVOLUTIONAL NEURAL-NETWORKS; MODEL; ARCHITECTURE; IMAGES; CNN;
D O I
10.1016/j.inffus.2022.12.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical diagnosis and treatment decisions rely upon the integration of patient-specific data with clinical rea-soning. Cancer presents a unique context that influences treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows non-invasive assessment of diseases based on visual evaluations, leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon the statistical modeling of neuroimaging data. Driven by breakthroughs in computer vision, deep learning has become the de facto standard in medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical, deep learning, and probabilistic deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. These results highlight that model -driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
引用
收藏
页码:450 / 465
页数:16
相关论文
共 149 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning [J].
Agn, Mikael ;
af Rosenschold, Per Munck ;
Puonti, Oula ;
Lundemann, Michael J. ;
Mancini, Laura ;
Papadaki, Anastasia ;
Thust, Steffi ;
Ashburner, John ;
Law, Ian ;
Van Leemput, Koen .
MEDICAL IMAGE ANALYSIS, 2019, 54 :220-237
[3]  
Amiri S., 2018, ICAART, V2, P183, DOI DOI 10.5220/0006629901830190
[4]  
[Anonymous], 2014, P MICCAI BRATS
[5]  
[Anonymous], 2001, COMP SCI W
[6]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[8]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[9]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[10]  
Bakas Spyridon, 2016, Brainlesion, V9556, P144, DOI [10.1007/978-3-319-30858-6_1, 10.1007/978-3-319-30858-6_13]