COMBATdb: a database for the COVID-19 Multi-Omics Blood ATlas

被引:6
|
作者
Wang, Dapeng [1 ,7 ]
Kumar, Vinod [2 ]
Burnham, Katie L. [3 ]
Mentzer, Alexander J. [1 ]
Marsden, Brian D. [2 ,4 ]
Knight, Julian C. [1 ,5 ,6 ]
机构
[1] Univ Oxford, Wellcome Ctr Human Genet, Oxford OX3 7BN, England
[2] Univ Oxford, Kennedy Inst Rheumatol, Oxford, England
[3] Wellcome Sanger Inst, Cambridge, England
[4] Univ Oxford, Ctr Med Discovery, NDM, Oxford OX3 7BN, England
[5] Univ Oxford, Chinese Acad Med Sci, Oxford Inst, Oxford, England
[6] NIHR Oxford Biomed Res Ctr, Oxford, England
[7] Imperial Coll London, Natl Heart & Lung Inst, London SW3 6LY, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
CELLS; VISUALIZATION; IMMUNOLOGY; MILD;
D O I
10.1093/nar/gkac1019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in our understanding of the nature of the immune response to SARS-CoV-2 infection, and how this varies within and between individuals, is important in efforts to develop targeted therapies and precision medicine approaches. Here we present a database for the COvid-19 Multi-omics Blood ATlas (COMBAT) project, COMBATdb (https://db.combat.ox.ac.uk). This enables exploration of multi-modal datasets arising from profiling of patients with different severities of illness admitted to hospital in the first phase of the pandemic in the UK prior to vaccination, compared with community cases, healthy controls, and patients with all-cause sepsis and influenza. These data include whole blood transcriptomics, plasma proteomics, epigenomics, single-cell multi-omics, immune repertoire sequencing, flow and mass cytometry, and cohort metadata. COMBATdb provides access to the processed data in a well-defined framework of samples, cell types and genes/proteins that allows exploration across the assayed modalities, with functionality including browse, search, download, calculation and visualisation via shiny apps. This advances the ability of users to leverage COMBAT datasets to understand the pathogenesis of COVID-19, and the nature of specific and shared features with other infectious diseases.
引用
收藏
页码:D896 / D905
页数:10
相关论文
共 50 条
  • [1] CVD Atlas: a multi-omics database of cardiovascular disease
    Qian, Qiheng
    Xue, Ruikun
    Xu, Chenle
    Wang, Fengyu
    Zeng, Jingyao
    Xiao, Jingfa
    NUCLEIC ACIDS RESEARCH, 2024,
  • [2] Aging Atlas: a multi-omics database for aging biology
    Liu, Guang-Hui
    Bao, Yiming
    Qu, Jing
    Zhang, Weiqi
    Zhang, Tao
    Kang, Wang
    Yang, Fei
    Ji, Qianzhao
    Jiang, Xiaoyu
    Ma, Yingke
    Ma, Shuai
    Liu, Zunpeng
    Chen, Siyu
    Wang, Si
    Sun, Shuhui
    Geng, Lingling
    Yan, Kaowen
    Yan, Pengze
    Fan, Yanling
    Song, Moshi
    Ren, Jie
    Wang, Qiaoran
    Yang, Shanshan
    Yang, Yuanhan
    Xiong, Muzhao
    Liang, Chuqiang
    Li, Lan-Zhu
    Cao, Tianling
    Hu, Jianli
    Yang, Ping
    Ping, Jiale
    Hu, Huifang
    Zheng, Yandong
    Sun, Guoqiang
    Li, Jiaming
    Liu, Lixiao
    Zou, Zhiran
    Ding, Yingjie
    Li, Mingheng
    Liu, Di
    Wang, Min
    Sun, Xiaoyan
    Wang, Cui
    Bi, Shi-jia
    Shan, Hezhen
    Zhuo, Xiao
    NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D825 - D830
  • [3] Multi-omics for COVID-19:driving development of therapeutics and vaccines
    Mengyu Guo
    Muya Xiong
    Jinying Peng
    Tong Guan
    Haixia Su
    Yanyi Huang
    Cai-Guang Yang
    Yang Li
    Diana Boraschi
    Thanigaimalai Pillaiyar
    Guanbo Wang
    Chengqi Yi
    Yechun Xu
    Chunying Chen
    National Science Review, 2023, 10 (09) : 307 - 336
  • [4] Multi-omics for COVID-19: driving development of therapeutics and vaccines
    Guo, Mengyu
    Xiong, Muya
    Peng, Jinying
    Guan, Tong
    Su, Haixia
    Huang, Yanyi
    Yang, Cai-Guang
    Li, Yang
    Boraschi, Diana
    Pillaiyar, Thanigaimalai
    Wang, Guanbo
    Yi, Chengqi
    Xu, Yechun
    Chen, Chunying
    NATIONAL SCIENCE REVIEW, 2023, 10 (09)
  • [5] Goose multi-omics database: A comprehensive multi-omics database for goose genomics
    Huang, Mingjiang
    Sun, Jiahe
    Wang, Jian
    Ye, Xiaoli
    Chen, Zhuping
    Zhao, Xianzhi
    Zhang, Keshan
    Ma, Lin
    Xue, Jiajia
    Luo, Yi
    Wu, Xianwen
    Wang, Haiwei
    Wang, Chao
    Liu, Zuohua
    Xie, Youhui
    Chen, Ying
    Wang, Qigui
    Wang, Yi
    Gao, Guangliang
    POULTRY SCIENCE, 2025, 104 (03)
  • [6] Pathogenic Mechanism and Multi-omics Analysis of Oral Manifestations in COVID-19
    Hao, Ming
    Wang, Dongxu
    Xia, Qianyun
    Kan, Shaoning
    Chang, Lu
    Liu, Huimin
    Yang, Zhijing
    Liu, Weiwei
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [7] Integrative multi-omics analysis to gain new insights into COVID-19
    Eshetie, Setegn
    Choi, Karmel W.
    Hypponen, Elina
    Benyamin, Beben
    Lee, S. Hong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Machine Learning, COVID-19 (2019-nCoV), and multi-OMICS
    Tarnok, Attila
    CYTOMETRY PART A, 2020, 97 (03) : 215 - 216
  • [9] Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19
    Singh, Rachana
    Singh, Pradhyumna Kumar
    Kumar, Rajnish
    Kabir, Md. Tanvir
    Kamal, Mohammad Amjad
    Rauf, Abdur
    Albadrani, Ghadeer M.
    Sayed, Amany A.
    Mousa, Shaker A.
    Abdel-Daim, Mohamed M.
    Uddin, Md. Sahab
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [10] Multi-Omics Identify Key Molecules and Pathogenesis of Severe COVID-19
    Kawasaki, T.
    Takeda, Y.
    Edahiro, R.
    Itoh, M. N.
    Kumanogoh, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205