Day-Ahead Hourly Solar Photovoltaic Output Forecasting Using SARIMAX, Long Short-Term Memory, and Extreme Gradient Boosting: Case of the Philippines

被引:7
作者
Benitez, Ian B. [1 ]
Ibanez, Jessa A. [1 ]
Lumabad, Cenon I. I. I. D. [1 ]
Canete, Jayson M. [1 ]
Principe, Jeark A. [2 ]
机构
[1] Univ Philippines Diliman, Natl Engn Ctr, Quezon City 1101, Philippines
[2] Univ Philippines Diliman, Dept Geodet Engn, Quezon City 1101, Philippines
关键词
LSTM; SARIMAX; solar PV output forecasting; XGBoost; TIME-SERIES; UNIT-ROOT; GENERATION;
D O I
10.3390/en16237823
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study explores the forecasting accuracy of SARIMAX, LSTM, and XGBoost models in predicting solar PV output using one-year data from three solar PV installations in the Philippines. The research aims to compare the performance of these models with their hybrid counterparts and investigate their performance. The study utilizes the adjusted shortwave radiation (SWR) product in the Advanced Himawari Imager 8 (AHI-8), as a proxy for in situ solar irradiance, and weather parameters, to improve the accuracy of the forecasting models. The results show that SARIMAX outperforms LSTM, XGBoost, and their combinations for Plants 1 and 2, while XGBoost performs best for Plant 3. Contrary to previous studies, the hybrid models did not provide more accurate forecasts than the individual methods. The performance of the models varied depending on the forecasted month and installation site. Using adjusted SWR and other weather parameters, as inputs in forecasting solar PV output, adds novelty to this research. Future research should consider comparing the accuracy of using adjusted SWR alone and combined with other weather parameters. This study contributes to solar PV output forecasting by utilizing adjusted satellite-derived solar radiation, and combining SARIMAX, LSTM, and XGBoost models, including their hybrid counterparts, in a single and comprehensive analysis.
引用
收藏
页数:21
相关论文
共 50 条
[1]   Solar PV Power Forecasting Using Traditional Methods and Machine Learning Techniques [J].
Alam, Ahmed Manavi ;
Nahid-Al-Masood ;
Razee, Md Iqbal Asif ;
Zunaed, Mohammad .
2021 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC), 2021,
[2]   Trends and gaps in photovoltaic power forecasting with machine learning [J].
Alcaniz, Alba ;
Grzebyk, Daniel ;
Ziar, Hesan ;
Isabella, Olindo .
ENERGY REPORTS, 2023, 9 :447-471
[3]  
Alduchov OA, 1996, J APPL METEOROL, V35, P601, DOI 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO
[4]  
2
[5]  
[Anonymous], 2020, Solar PV
[6]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[7]  
Au J., 2020, SMU Data Sci. Rev., V3, P6
[8]   Long-Term Prediction of Solar Radiation Using XGboost, LSTM, and Machine Learning Algorithms [J].
Bamisile, Olusola ;
Ejiyi, Chukwuebuka J. ;
Osei-Mensah, Emmanuel ;
Chikwendu, Ijeoma A. ;
Li, Jian ;
Huang, Qi .
2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, :214-218
[9]   A novel data gaps filling method for solar PV output forecasting [J].
Benitez, Ian B. ;
Ibanez, Jessa A. ;
Lumabad, Cenon D. ;
Canete, Jayson M. ;
de los Reyes, Francisco N. ;
Principe, Jeark A. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (04)
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794