Toeplitz operators on the weighted Bergman spaces of quotient domains

被引:1
作者
Ghosh, Gargi [1 ]
Narayanan, E. K. [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Informat Technol, PL-30348 Krakow, Poland
[2] Indian Inst Sci, Bangalore 560012, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 188卷
基金
欧盟地平线“2020”;
关键词
Toeplitz operator; Pseudorelfection group; Quotient domain; Weighted Bergman space; PROPER HOLOMORPHIC MAPPINGS; ZERO PRODUCTS;
D O I
10.1016/j.bulsci.2023.103340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite pseudoreflection group and omega subset of Cd be a bounded domain which is a G-space. We establish identities involving Toeplitz operators on the weighted Bergman spaces of omega and omega/G using invariant theory and representation theory of G. This, in turn, provides techniques to study algebraic properties of Toeplitz operators on the weighted Bergman space on omega/G. We specialize on the generalized zero-product problem and characterization of commuting pairs of Toeplitz operators. As a consequence, more intricate results on Toeplitz operators on the weighted Bergman spaces on some specific quotient domains (namely symmetrized polydisc, monomial polyhedron, Rudin's domain) have been obtained. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:29
相关论文
共 37 条
[1]   On the range of the Berezin transform [J].
Ahern, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (01) :206-216
[2]   A theorem of Brown-Halmos type for Bergman space Toeplitz operators [J].
Ahern, P ;
Cuckovic, Z .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) :200-210
[3]   ZERO PRODUCTS OF TOEPLITZ OPERATORS [J].
Aleman, Alexandru ;
Vukotic, Dragan .
DUKE MATHEMATICAL JOURNAL, 2009, 148 (03) :373-403
[4]  
[Anonymous], 2002, Elem. Math. (Berlin), DOI DOI 10.1007/978-3-540-89394-3
[5]   ALGEBRAIC PROPERTIES OF TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES [J].
Appuhamy, Amila .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) :823-836
[6]   ALGEBRAS ON THE DISK AND DOUBLY COMMUTING MULTIPLICATION OPERATORS [J].
AXLER, S ;
GORKIN, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :711-723
[7]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12
[8]  
BEDFORD E, 1985, J REINE ANGEW MATH, V361, P162
[9]   PROPER HOLOMORPHIC MAPPINGS [J].
BEDFORD, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 10 (02) :157-175