Nanomaterials and Their Recent Applications in Impedimetric Biosensing

被引:16
|
作者
Stukovnik, Zala [1 ]
Fuchs-Godec, Regina [1 ]
Bren, Urban [1 ,2 ,3 ]
机构
[1] Univ Maribor, Fac Chem & Chem Engn, Smetanova Ul 17, Maribor 2000, Slovenia
[2] Univ Primorska, Fac Math Nat Sci & Informat Technol, Glagoljaska Ul 8, Koper 6000, Slovenia
[3] Inst Environm Protect & Sensors, Beloruska Ul 7, Maribor 2000, Slovenia
来源
BIOSENSORS-BASEL | 2023年 / 13卷 / 10期
关键词
impedimetric biosensor; electrochemical impedance spectroscopy; nanomaterials; metal nanoparticles; carbon nanofibers; carbon nanotubes; graphene oxide; quantum dots; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; GLASSY-CARBON ELECTRODE; GRAPHENE-BASED SENSORS; GOLD NANOPARTICLES; DNA-SENSORS; SURFACE; APTASENSOR; NANOTUBES; NANOFIBER; IMMOBILIZATION;
D O I
10.3390/bios13100899
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Gold microtubes assembling architecture for an impedimetric glucose biosensing system
    Bianchini, C.
    Zane, D.
    Curulli, A.
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 220 : 734 - 742
  • [32] Nanomaterials for biosensing with electrochemiluminescence (ECL) detection
    Bertoncello, Paolo
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2011, 16 : 1084 - 1108
  • [33] Recent applications of nanomaterials in capillary electrophoresis
    Angel Gonzalez-Curbelo, Miguel
    Angelica Varela-Martinez, Diana
    Socas-Rodriguez, Barbara
    Hernandez-Borges, Javier
    ELECTROPHORESIS, 2017, 38 (19) : 2431 - 2446
  • [34] Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing
    Oh, Wan-Kyu
    Kwon, Oh Seok
    Jang, Jyongsik
    POLYMER REVIEWS, 2013, 53 (03) : 407 - 442
  • [35] Recent applications of nanomaterials in food safety
    Socas-Rodriguez, Barbara
    Gonzalez-Salamo, Javier
    Hernandez-Borges, Javier
    Angel Rodriguez-Delgado, Miguel
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2017, 96 : 172 - 200
  • [36] Editorial: Smart nanomaterials for biosensing and therapy applications
    Lin, Xiaofeng
    Huang, Qitong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [37] Selenium-based nanomaterials for biosensing applications
    Mostafavi, Ebrahim
    Medina-Cruz, David
    Truong, Linh B.
    Kaushik, Ajeet
    Iravani, Siavash
    MATERIALS ADVANCES, 2022, 3 (21): : 7742 - 7756
  • [38] Carbon Nanomaterials as Versatile Platforms for Biosensing Applications
    Hwang, Hye Suk
    Jeong, Jae Won
    Kim, Yoong Ahm
    Chang, Mincheol
    MICROMACHINES, 2020, 11 (09)
  • [39] Two-dimensional nanomaterials for biosensing applications
    Su, Shao
    Sun, Qian
    Gu, Xiaodan
    Xu, Yongqiang
    Shen, Jianlei
    Zhu, Dan
    Chao, Jie
    Fan, Chunhai
    Wang, Lianhui
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 119
  • [40] Nanomaterials for Biosensing Lipopolysaccharide
    Sondhi, Palak
    Maruf, Md Helal Uddin
    Stine, Keith J.
    BIOSENSORS-BASEL, 2020, 10 (01):