Global series for height 1 multiple zeta functions

被引:2
作者
Young, Paul Thomas [1 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
Multiple zeta functions; Ramanujan summation; Stieltjes constants; Multiple harmonic star sums; ANALYTIC CONTINUATION; VALUES; NUMBERS;
D O I
10.1007/s40879-023-00695-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
\We use everywhere-convergent series for the height 1 multiple zeta functions sigma(s, 1,..., 1) to determine the singular parts of their Laurent series at each of their poles, and give an expression for each first "Stieltjes constant" (i.e., the linear Laurent coefficient) as series involving the Bernoulli numbers of the second kind, generalizing the classical Mascheroni series for Euler's constant gamma. The first Stieltjes constants at s = 1 and at s = 0 are then interpreted in terms of the Ramanujan summation of multiple harmonic star sums sigma*(1,..., 1).
引用
收藏
页数:24
相关论文
共 30 条
[1]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[2]   DIRICHLET SERIES RELATED TO THE RIEMANN ZETA FUNCTION [J].
APOSTOL, TM ;
VU, TH .
JOURNAL OF NUMBER THEORY, 1984, 19 (01) :85-102
[3]   On multiple L-values [J].
Arakawa, T ;
Kaneko, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (04) :967-991
[4]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[5]  
Berndt BC., 1985, Ramanujans Notebooks. Part I, DOI DOI 10.1007/978-1-4612-1088-7
[6]   The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers [J].
Boyadzhiev, Khristo N. ;
Gadiyar, H. Copalkrishna ;
Padma, R. .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) :277-283
[7]  
Boyadzhiev KN., 2018, Gaz. Mat. Ser. A, V115, P1
[8]  
Candelpergher B, 2010, RAMANUJAN J, V21, P99, DOI 10.1007/s11139-009-9166-0
[9]   Laurent expansion of harmonic zeta functions [J].
Candelpergher, Bernard ;
Coppo, Marc-Antoine .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
[10]   Ramanujan Summation [J].
Candelpergher, Bernard .
RAMANUJAN SUMMATION OF DIVERGENT SERIES, 2017, 2185 :1-29