Statistical methods for gene-environment interaction analysis

被引:6
|
作者
Miao, Jiacheng [1 ]
Wu, Yixuan [2 ]
Lu, Qiongshi [1 ,3 ,4 ,5 ]
机构
[1] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI USA
[4] Univ Wisconsin Madison, Ctr Demog Hlth & Aging, Madison, WI USA
[5] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
gene-environment interaction (G x E); precision medicine; statistical genetics; WIDE ASSOCIATION; HERITABILITY; ARCHITECTURE; TRAITS; ROBUST; ERA;
D O I
10.1002/wics.1635
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most human complex phenotypes result from multiple genetic and environmental factors and their interactions. Understanding the mechanisms by which genetic and environmental factors interact offers valuable insights into the genetic architecture of complex traits and holds great potential for advancing precision medicine. The emergence of large population biobanks has led to the development of numerous statistical methods aiming at identifying gene-environment interactions (G x E). In this review, we present state-of-the-art statistical methodologies for G x E analysis. We will survey a spectrum of approaches for single-variant G x E mapping, followed by various techniques for polygenic G x E analysis. We conclude this review with a discussion on the future directions and challenges in G x E research.This article is categorized under: Applications of Computational Statistics > Genomics/Proteomics/Genetics Data: Types and Structure > Massive Data Statistical Models > Linear Models
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Review of Statistical Methods for Gene-Environment Interaction Analysis
    Han, Summer S.
    Chatterjee, Nilanjan
    CURRENT EPIDEMIOLOGY REPORTS, 2018, 5 (01) : 39 - 45
  • [2] Review of Statistical Methods for Gene-Environment Interaction Analysis
    Summer S. Han
    Nilanjan Chatterjee
    Current Epidemiology Reports, 2018, 5 : 39 - 45
  • [3] Comparisons of power of statistical methods for gene-environment interaction analyses
    Ege, Markus J.
    Strachan, David P.
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2013, 28 (10) : 785 - 797
  • [4] Gene-environment interaction and association analysis
    Purcell, S
    BEHAVIOR GENETICS, 2004, 34 (06) : 657 - 657
  • [5] Gene-environment interaction and association analysis
    Purcell, SM
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2004, 130B (01): : 11 - 11
  • [6] Structured gene-environment interaction analysis
    Wu, Mengyun
    Zhang, Qingzhao
    Ma, Shuangge
    BIOMETRICS, 2020, 76 (01) : 23 - 35
  • [7] Gene-Environment Interaction
    Manuck, Stephen B.
    McCaffery, Jeanne M.
    ANNUAL REVIEW OF PSYCHOLOGY, VOL 65, 2014, 65 : 41 - 70
  • [8] Gene-environment interaction
    Cicchetti, Dante
    DEVELOPMENT AND PSYCHOPATHOLOGY, 2007, 19 (04) : 957 - 959
  • [9] EPIDEMIOLOGIC ANALYSIS OF GENE-ENVIRONMENT INTERACTION IN TWINS
    OTTMAN, R
    GENETIC EPIDEMIOLOGY, 1994, 11 (01) : 75 - 86
  • [10] A Unified Model for the Analysis of Gene-Environment Interaction
    Gauderman, W. James
    Kim, Andre
    Conti, David V.
    Morrison, John
    Thomas, Duncan C.
    Vora, Hita
    Lewinger, Juan Pablo
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (04) : 760 - 767