Dynamic particle swarm optimization-radial function extremum neural network method of HCF probability analysis for compressor blade

被引:6
作者
Wei, Jingshan [1 ]
Zheng, Qun [1 ]
Yan, Wei [1 ]
Jiang, Bin [1 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressor blade; High cycle fatigue; Radial basis function neural network; Extreme response surface method; Dynamic particle swarm optimization; Probabilistic analysis; FATIGUE LIFE PREDICTION; 1ST-ORDER RELIABILITY METHOD; CRITICAL PLANE APPROACH; DAMAGE PARAMETER; CYCLE FATIGUE; MODEL; STRESS; NANOFLUIDS; STRATEGY; DESIGN;
D O I
10.1016/j.ijfatigue.2023.107900
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The high cycle fatigue (HCF) of compressor rotor seriously affects the performance and reliability of gas turbine. Probabilistic HCF evaluation is an effective measure to quantify the uncertain traits of vibration stresses and assess the reliable HCF life for compressor rotor. To improve modeling accuracy and computational efficiency in transient probability analysis of HCF life of gas turbine compressor, radial basis function neural network (RBFNN) and dynamic particle swarm optimization (DPSO) algorithm were introduced into extreme response surface method (ERSM). In this paper, we propose a HCF life probability evaluation method for compressor blades based on the dynamic particle swarm optimization-radial basis function extremum neural network (DPSORBFENN) model. By selecting random input variables such as aerodynamic load, centrifugal load and material parameters, a prediction model was established based on DPSO-RBFENN sample learning, and the reliability evaluation of compressor blade HCF life was carried out. Distribution characteristics, reliability and sensitivity to fatigue life were obtained, which provided a basis for the structural design of compressor blades. The Monte Carlo method, ERSM, RBFNN and DPSO-RBFENN are compared.
引用
收藏
页数:17
相关论文
共 42 条