Deep Crowd Anomaly Detection by Fusing Reconstruction and Prediction Networks

被引:7
|
作者
Sharif, Md. Haidar [1 ]
Jiao, Lei [1 ]
Omlin, Christian W. [1 ]
机构
[1] Univ Agder, Dept Informat & Commun Technol, N-4879 Grimstad, Norway
关键词
attention block; crowd; CNN; non-local mean; transformer; U-Net; ABNORMAL EVENT DETECTION; SURVEILLANCE; ALGORITHMS; PRIVACY; MODELS;
D O I
10.3390/electronics12071517
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Abnormal event detection is one of the most challenging tasks in computer vision. Many existing deep anomaly detection models are based on reconstruction errors, where the training phase is performed using only videos of normal events and the model is then capable to estimate frame-level scores for an unknown input. It is assumed that the reconstruction error gap between frames of normal and abnormal scores is high for abnormal events during the testing phase. Yet, this assumption may not always hold due to superior capacity and generalization of deep neural networks. In this paper, we design a generalized framework (rpNet) for proposing a series of deep models by fusing several options of a reconstruction network (rNet) and a prediction network (pNet) to detect anomaly in videos efficiently. In the rNet, either a convolutional autoencoder (ConvAE) or a skip connected ConvAE (AEc) can be used, whereas in the pNet, either a traditional U-Net, a non-local block U-Net, or an attention block U-Net (aUnet) can be applied. The fusion of both rNet and pNet increases the error gap. Our deep models have distinct degree of feature extraction capabilities. One of our models (AEcaUnet) consists of an AEc with our proposed aUnet has capability to confirm better error gap and to extract high quality of features needed for video anomaly detection. Experimental results on UCSD-Ped1, UCSD-Ped2, CUHK-Avenue, ShanghaiTech-Campus, and UMN datasets with rigorous statistical analysis show the effectiveness of our models.
引用
收藏
页数:41
相关论文
共 50 条
  • [21] Crowd Anomaly Detection via Spatial Constraints and Meaningful Perturbation
    Feng, Jiangfan
    Wang, Dini
    Zhang, Li
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (03)
  • [22] Anomaly detection in surveillance video based on bidirectional prediction
    Chen, Dongyue
    Wang, Pengtao
    Yue, Lingyi
    Zhang, Yuxin
    Jia, Tong
    IMAGE AND VISION COMPUTING, 2020, 98 (98)
  • [23] Spatio-temporal based video anomaly detection using deep neural networks
    Chaurasia R.K.
    Jaiswal U.C.
    International Journal of Information Technology, 2023, 15 (3) : 1569 - 1581
  • [24] Anomaly and intrusion detection using deep learning for software-defined networks: A survey
    Ruffo, Vitor Gabriel da Silva
    Lent, Daniel Matheus Brandao
    Komarchesqui, Mateus
    Schiavon, Vinicius Ferreira
    de Assis, Marcos Vinicius Oliveira
    Carvalho, Luiz Fernando
    Proenca Jr, Mario Lemes
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [25] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [26] Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks
    Alsoufi, Muaadh A.
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Al-Razgan, Muna
    Al-Asaly, Mahfoudh Saeed
    Alfakih, Taha
    Saeed, Faisal
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 823 - 845
  • [28] A survey of video-based crowd anomaly detection in dense scenes
    Ma J.
    Dai Y.
    Hirota K.
    2017, Fuji Technology Press (21) : 235 - 246
  • [29] An adaptive training-less framework for anomaly detection in crowd scenes
    Sikdar, Arindam
    Chowdhury, Ananda S.
    NEUROCOMPUTING, 2020, 415 : 317 - 331
  • [30] Gaussian-Poisson Mixture Model for Anomaly Detection of Crowd Behaviour
    Yu, Jongmin
    Gwak, Jeonghwan
    Jeon, Moongu
    2016 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2016, : 106 - 111