A didactic approach to quantum machine learning with a single qubit

被引:6
作者
Tapia, Elena Pena [1 ]
Scarpa, Giannicola [2 ]
Pozas-Kerstjens, Alejandro [3 ]
机构
[1] Univ Politecn Madrid, Madrid 28031, Spain
[2] Univ Politecn Madrid, Escuela Ten Super Ingn Sistemas Informat, Madrid 28031, Spain
[3] UCM, Inst Ciencias Matemat CSIC, UAM, UC3M, Madrid 28049, Spain
关键词
quantum machine learning; neural networks; fraud detection; supervised learning; NETWORKS;
D O I
10.1088/1402-4896/acc5b8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents, via an explicit example with a real-world dataset, a hands-on introduction to the field of quantum machine learning (QML). We focus on the case of learning with a single qubit, using data re-uploading techniques. After a discussion of the relevant background in quantum computing and machine learning we provide a thorough explanation of the data re-uploading models that we consider, and implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK. We find that, as in the case of classical neural networks, the number of layers is a determining factor in the final accuracy of the models. Moreover, and interestingly, the results show that single-qubit classifiers can achieve a performance that is on-par with classical counterparts under the same set of training conditions. While this cannot be understood as a proof of the advantage of quantum machine learning, it points to a promising research direction, and raises a series of questions that we outline.
引用
收藏
页数:17
相关论文
共 30 条
[1]   Single-photon nonlocality in quantum networks [J].
Abiuso, Paolo ;
Krivachy, Tamas ;
Boghiu, Emanuel-Cristian ;
Renou, Marc-Olivier ;
Pozas-Kerstjens, Alejandro ;
Acin, Antonio .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[2]   Quantum-inspired algorithms in practice [J].
Arrazola, Juan Miguel ;
Delgado, Alain ;
Bardhan, Bhaskar Roy ;
Lloyd, Seth .
QUANTUM, 2020, 4
[3]  
Arunachalam Srinivasan, 2017, ACM SIGACT News, V48, P41, DOI [10.1145/3106700.3106710, 10.1145/3106700.3106710]
[4]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[6]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[7]   Detecting quantum entanglement with unsupervised learning [J].
Chen, Yiwei ;
Pan, Yu ;
Zhang, Guofeng ;
Cheng, Shuming .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
[8]  
Chollet F., KERAS
[9]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[10]   NEURAL NETWORKS FOR TRIGGERING [J].
DENBY, B ;
CAMPBELL, M ;
BEDESCHI, F ;
CHRISS, N ;
NESTI, F .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1990, 37 (02) :248-254