Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS2 nanosheets in lithium-ion batteries

被引:25
作者
Liu, Kun [1 ]
Wang, Jia-ao [2 ,3 ]
Lou, Chenjie [4 ]
Zhou, Ziru [5 ]
Zhang, Ning [1 ]
Yu, Yingtao [5 ]
Zhang, Qingxiao [6 ]
Henkelman, Graeme [2 ,3 ]
Tang, Mingxue [4 ]
Sun, Juncai [1 ]
机构
[1] Dalian Maritime Univ, Inst Mat & Technol, Dalian 116026, Peoples R China
[2] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[3] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[4] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China
[5] Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian 116026, Peoples R China
[6] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Peoples R China
关键词
Nitrogen-doped mesoporous carbon; SnS; 2; nanosheets; Lithium-ion batteries; Sequential evolution mechanism; DFT calculations; HIERARCHICAL POROUS CARBON; LI-S BATTERY; ELECTROCHEMICAL PERFORMANCE; SNS2; NANOPARTICLES; GRAPHENE OXIDE; ANODE; STORAGE; COMPOSITES; STABILITY; NANORODS;
D O I
10.1016/j.apsusc.2023.156673
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin sulfide/nitrogen-doped mesoporous carbon (SnS2/NC) composite material is identified as a prospective anode material in lithium-ion batteries. Nevertheless, the evolution mechanism of SnS2/NC anode and the electronic conductivity of nitrogen-doped carbon to SnS2 are still unclear. Meanwhile, the preparation process of SnS2/NC is complicated and requires the use of harmful solvents. Herein, we propose a simple and green strategy for the construction of SnS2/NC nanosheets, and investigate its evolution mechanism and electronic conductivity in detail. DFT calculations substantiate the improved electronic conductivity and heightened Li adsorption af-finity after N doping. Profiting from the enhancement of electronic conductivity and Li adsorption affinity, the SnS2/NC anode attains a satisfactory discharge capacity (863.9 mAh/g at 100 mA/g over 100 cycles). Corre-spondingly, the assembled full cell achieves a capacity attenuation of solely 0.3% per cycle over 90 cycles. Upon lithiation, a sequential evolution mechanism, containing intercalation, conversion and alloying reactions, is reported on the basis of in-situ XRD, ex-situ XPS, and NMR characterizations. Additionally, ex-situ Raman reveals the reversible evolution of SnS2. These findings could afford significant reference and guideline for the evolution mechanism of other metal sulfides materials in energy storage areas.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Sheet-Like Stacking SnS2/rGO Heterostructures as Ultrastable Anodes for Lithium-Ion Batteries [J].
Liu, Jiande ;
Chang, Yingfan ;
Sun, Kai ;
Guo, Pengqian ;
Cao, Dianliang ;
Ma, Yaodong ;
Liu, Dequan ;
Liu, Qiming ;
Fu, Yujun ;
Liu, Jie ;
He, Deyan .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) :11739-11749
[32]   Nitrogen-Doped Porous Carbon/Co3O4 Nanocomposites as Anode Materials for Lithium-Ion Batteries [J].
Wang, Li ;
Zheng, Yaolin ;
Wang, Xiaohong ;
Chen, Shouhui ;
Xu, Fugang ;
Zuo, Li ;
Wu, Jialeng ;
Sun, Lanlan ;
Li, Zhuang ;
Hou, Haoqing ;
Songt, Yonghai .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7117-7125
[33]   Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries [J].
Gao, Yang ;
Qiu, Xiaotao ;
Wang, Xiuli ;
Chen, Xianchun ;
Gu, Aiqun ;
Yu, Zili .
NANOTECHNOLOGY, 2020, 31 (15)
[34]   Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage [J].
Chang, Kun ;
Geng, Dongsheng ;
Li, Xifei ;
Yang, Jinli ;
Tang, Yongji ;
Cai, Mei ;
Li, Ruying ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2013, 3 (07) :839-844
[35]   Nitrogen-doped carbon and reduced graphene oxide co-decorated SnS2 nanoplates for high efficiency lithium/sodium ion storage [J].
Hua-Ying Wang ;
Xiao-Xiao Yang ;
Fen Gao ;
Bo-Han Zhang ;
Wan-Xin Wen ;
Jing-Zhou Chen ;
Yun-Lei Hou ;
Dong-Lin Zhao .
Ionics, 2023, 29 :3559-3572
[36]   Ultrafine TiO2 nanocrystalline anchored on nitrogen-doped amorphous mesoporous hollow carbon nanospheres as advanced anode for lithium ion batteries [J].
Yuan, Yongfeng ;
Chen, Fei ;
Cai, Gaocan ;
Yin, Simin ;
Zhu, Min ;
Wang, Lina ;
Yang, Jinlin ;
Guo, Shaoyi .
ELECTROCHIMICA ACTA, 2019, 296 (669-675) :669-675
[37]   Construction and preparation of nitrogen-doped porous carbon material based on waste biomass for lithium-ion batteries [J].
Yang, Xinxin ;
Zheng, Xuchao ;
Yan, Zhanheng ;
Huang, Zhongyuan ;
Yao, Yong ;
Li, Huanxin ;
Kuang, Yafei ;
Zhou, Haihui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (33) :17267-17281
[38]   Facile Synthesis of Molybdenum Disulfide Nanosheets/Nitrogen-Doped Porous Carbon Composites for High-Performance Anode Material in Lithium-Ion Batteries [J].
Guo, Shuainan ;
Zhang, Qian ;
Zhu, Zhixin ;
Xie, Jiawei ;
Fan, Jinchen ;
Xu, Qunjie ;
Shi, Penghui ;
Min, Yulin .
CHEMISTRYSELECT, 2017, 2 (10) :3117-3128
[39]   A novel SnS2 nanomaterial based on nitrogen-doped cubic-like carbon skeleton with excellent lithium storage [J].
Zhang, Zhe ;
Jiang, Lei ;
Wu, Daoning ;
Liang, Fenghao ;
Li, Xiaochun ;
Rui, Yichuan ;
Tang, Bohejin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 883
[40]   Enhanced electrochemical performance of mesoporous spherical SnS2/porous carbon composite prepared by dual-solvent hydrothermal method for lithium-ion batteries [J].
Hao Luan ;
Kun Liu ;
Yuhao Zhou ;
Juncai Sun .
Ionics, 2022, 28 :4997-5004