Low-loss data compression using deep learning framework with attention-based autoencoder

被引:1
|
作者
Sriram, S. [1 ]
Chitra, P. [1 ]
Sankar, V. Vijay [1 ]
Abirami, S. [1 ]
Durai, S. J. Rethina [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
deep learning; multi-layer autoencoder; compression ratio; attention; reconstruction loss; ALGORITHM;
D O I
10.1504/IJCSE.2023.129150
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With rapid development of media, data compression plays a vital role in efficient data storage and transmission. Deep learning can help the research objective of compression by exploring its technical avenues to overcome the challenges faced by the traditional Windows archivers. The proposed work initially investigates multi-layer autoencoder models, which achieve higher compression rates than traditional Windows archivers but suffer from reconstruction loss. To address this, an attention layer is proposed in the autoencoder to reduce the difference between the encoder and decoder latent representation of an input along with the difference between the original input and reconstructed output. The proposed attention-based autoencoder is extensively evaluated on the atmospheric and oceanic data obtained from the Centre for Development of Advanced Computing (CDAC). The results show that the proposed model performs better with around 89.7% improved compression rate than traditional Windows archiver and 25% reduced reconstruction loss than multi-layer autoencoder.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [1] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    Sriram, S.
    Dwivedi, Arun K.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    Pandey, Divya
    Khare, Manoj K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10395 - 10410
  • [2] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    S. Sriram
    Arun K. Dwivedi
    P. Chitra
    V. Vijay Sankar
    S. Abirami
    S. J. Rethina Durai
    Divya Pandey
    Manoj K. Khare
    Arabian Journal for Science and Engineering, 2022, 47 : 10395 - 10410
  • [3] ADRL: An attention-based deep reinforcement learning framework for knowledge graph reasoning
    Wang, Qi
    Hao, Yongsheng
    Cao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [4] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [5] Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation
    Buffelli, Davide
    Vandin, Fabio
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13474 - 13483
  • [6] Motion Consistency Loss for Monocular Visual Odometry with Attention-Based Deep Learning
    Francani, Andre O.
    Maximo, Marcos R. O. A.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 409 - 414
  • [7] Attention-Based Deep Learning Framework for Hemiplegic Gait Prediction With Smartphone Sensors
    Thakur, Dipanwita
    Biswas, Suparna
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11979 - 11988
  • [8] An efficient computational framework for gastrointestinal disorder prediction using attention-based transfer learning
    Zhou, Jiajie
    Song, Wei
    Liu, Yeliu
    Yuan, Xiaoming
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [9] KAICD: A knowledge attention-based deep learning framework for automatic ICD coding
    Wu, Yifan
    Zeng, Min
    Fei, Zhihui
    Yu, Ying
    Wu, Fang-Xiang
    Li, Min
    NEUROCOMPUTING, 2022, 469 : 376 - 383
  • [10] Attention-Based Ensemble for Deep Metric Learning
    Kim, Wonsik
    Goyal, Bhavya
    Chawla, Kunal
    Lee, Jungmin
    Kwon, Keunjoo
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 760 - 777