Advancing Nitinol Implant Design and Simulation Through Data-Driven Methodologies

被引:2
|
作者
Paranjape, Harshad M. [1 ,2 ]
机构
[1] Confluent Med Technol Inc, 47533 Westinghouse Dr, Fremont, CA 94539 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, 140 W 19th Ave, Columbus, OH 43210 USA
关键词
Nitinol; Shape memory alloys; Modeling; Data-driven; NON-METALLIC INCLUSIONS; HIGH-STRENGTH STEELS; CYCLE FATIGUE LIFE; UNCERTAINTY QUANTIFICATION; THERMOMECHANICAL BEHAVIOR; QUANTITATIVE-EVALUATION; MEMORY; MODEL; MICROSTRUCTURE; ALLOY;
D O I
10.1007/s40830-023-00421-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent advances in the Data Science methods for acquiring and analyzing large amounts of materials deformation data have the potential to tremendously benefit Nitinol (Nickel-Titanium shape memory alloy) implant design and simulation. We review some of these data-driven methodologies and provide a perspective on adapting these techniques to Nitinol design and simulation. We organize the review in a three-tiered approach. The methods in the first tier relate to data acquisition. We review methods for acquiring full-field deformation data from implants and methods for quantifying uncertainty in such data. The second-tier methods relate to combining data from multiple sources to gain a holistic understanding of complex deformation phenomena such as fatigue. Methods in the third tier relate to making data-driven simulation of the deformation response of Nitinol. A wide adaption of these methods by the Nitinol cardiovascular implant community may be facilitated by building consensus on best practices and open exchange of computational tools.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [41] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    Nature Communications, 13
  • [43] Curriculum Design - A Data-Driven Approach
    Chang, Jung-Kuei
    Tsao, Nai-Lung
    Kuo, Chin-Hwa
    Hsu, Hui-Huang
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 492 - 496
  • [44] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47
  • [45] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195
  • [46] Data-driven computational protein design
    Frappier, Vincent
    Keating, Amy E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 69 : 63 - 69
  • [47] Optimizing Orthopaedic Trauma Implant Pricing Through a Data-Driven and Surgeon-Integrated Approach
    Seltzer, Ryan
    Johnson, Joseph R.
    McFarlane, Kelly
    Chawla, Amanda
    Chamberlain, Stephanie
    Kohler, Michael
    Sheth, Kunj
    Wall, James K.
    Bishop, Julius
    Gardner, Michael
    Shea, Kevin G.
    JOURNAL OF ORTHOPAEDIC TRAUMA, 2023, 37 (06) : 304 - +
  • [48] DATA-DRIVEN DESIGN & PREDICTIVE GAMIFICATION
    Stogr, Jakub
    DISCO 2015: FROM ANALOG EDUCATION TO DIGITAL EDUCATION, 2015, : 193 - 193
  • [49] Design of a Data-Driven PID Controller
    Yamamoto, Toru
    Takao, Kenji
    Yamada, Takaaki
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (01) : 29 - 39
  • [50] Data-Driven Design of an Ebola Therapeutic
    Lodder, Robert A.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1612 - 1621