MA-CNN based spindle thermal error modeling using the depth feature analysis with thermal error mechanism

被引:13
作者
Fu, Guoqiang [1 ,2 ,3 ]
Mu, Sen [1 ,3 ]
Zheng, Yue [1 ,3 ]
Lu, Caijiang [1 ,3 ]
Wang, Xi [1 ,3 ]
Wang, Tao [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Chongqing Univ, Lab Mech Transmiss, Chongqing 400044, Peoples R China
[3] Technol & Equipment Rail Transit Operat & Maintena, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal error; Thermal error modelling; Complex working conditions; Depth feature analysis; MACHINE-TOOL; COMPENSATION; OPTIMIZATION;
D O I
10.1016/j.measurement.2024.114183
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamic changes in the temperature fields make it unavoidable for the spindle to undergo thermal deformation. Thermal error modelling is helpful in enhancing the accuracy of machine tools. This paper proposes a spindle thermal error modelling method based on the mayfly algorithm (MA) for complex working conditions. First, different working conditions are set to obtain thermal deformation and temperature data. A thermal error model is established using MA. MA is used to optimize the number and size of convolutional kernels. Next, the depth features of the model are compared with the exponential thermal error model in logarithmic space. The model is compared with five other models. The results indicate that the MA -CNN model has a higher accuracy. Finally, the compensation is conducted in three directions. The results show that the average thermal error in the Z direction is reduced by 63.75 %, which demonstrates the good performance of the model.
引用
收藏
页数:20
相关论文
共 41 条
[1]  
Bai S., 2018, ARXIV PREPRINT ARXIV
[2]   Adaptive learning control for thermal error compensation of 5-axis machine tools [J].
Blaser, Philip ;
Pavlicek, Florentina ;
Mori, Kotaro ;
Mayr, Josef ;
Weikert, Sascha ;
Wegener, Konrad .
JOURNAL OF MANUFACTURING SYSTEMS, 2017, 44 :302-309
[3]   A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention [J].
Chen, Yu ;
Chen, Jihong ;
Xu, Guangda .
MEASUREMENT, 2021, 184
[4]   Thermal error analysis and modeling for high-speed motorized spindles based on LSTM-CNN [J].
Cheng, Yaonan ;
Zhang, Xianpeng ;
Zhang, Guangxin ;
Jiang, Wenqi ;
Li, Baowei .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (5-6) :3243-3257
[5]   An improved thermal performance modeling for high-speed spindle of machine tool based on thermal contact resistance analysis [J].
Fang, Bing ;
Cheng, Mengna ;
Gu, Tianqi ;
Ye, Dapeng .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (7-8) :5259-5268
[6]   Look-ahead prediction of spindle thermal errors with on-machine measurement and the cubic exponential smoothing-unscented Kalman filtering-based temperature prediction model of the machine tools [J].
Fu, Guoqiang ;
Zheng, Yue ;
Zhou, Linfeng ;
Lu, Caijiang ;
Zhang, Li ;
Wang, Xi ;
Wang, Tao .
MEASUREMENT, 2023, 210
[7]   Improved unscented Kalman filter algorithm-based rapid identification of thermal errors of machine tool spindle for shortening thermal equilibrium time [J].
Fu, Guoqiang ;
Zhou, Linfeng ;
Zheng, Yue ;
Lu, Caijiang ;
Wang, Xi ;
Xie, Luofeng .
MEASUREMENT, 2022, 195
[8]   Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network [J].
Fu, Guoqiang ;
Gong, Hongwei ;
Gao, Hongli ;
Gu, Tengda ;
Cao, Zhongqing .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 105 (5-6) :2039-2055
[9]   Adaptive thermal displacement compensation method based on deep learning [J].
Fujishima, Makoto ;
Narimatsu, Koichiro ;
Irino, Naruhiro ;
Mori, Masahiko ;
Ibaraki, Soichi .
CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2019, 25 :22-25
[10]   Study of static thermal deformation modeling based on a hybrid CNN-LSTM model with spatiotemporal correlation [J].
Guo, Jiahao ;
Xiong, Qingyu ;
Chen, Jing ;
Miao, Enming ;
Wu, Chao ;
Zhu, Qiwu ;
Yang, Zhengyi ;
Chen, Jie .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (3-4) :2601-2613