Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties

被引:1
作者
Wu, Meimei [1 ,2 ]
Hua, Chenqiang [1 ]
Song, Biyu [1 ,3 ]
Zhi, Guo-Xiang [2 ]
Niu, Tianchao [1 ,2 ]
Zhou, Miao [1 ,2 ,3 ]
机构
[1] Beihang Univ, Inst Int Innovat, Hangzhou, Peoples R China
[2] Tianmushan Lab, Hangzhou 310023, Peoples R China
[3] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
quantum spin Hall insulator; nanoribbons; semiconductor substrate; epitaxial growth; electronic structure; quantum transport; PHASE-TRANSITION; TOPOLOGICAL INSULATORS; GRAPHENE NANORIBBONS; MOLECULAR-DYNAMICS; STATE; GROWTH;
D O I
10.1088/1367-2630/ad2a82
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a (p(x), p(y))-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of Eg(3p-1)>E-g(3p)>E-g(3p+1),E- so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2e(2)/h, and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.
引用
收藏
页数:10
相关论文
共 74 条
[1]   Quantum Spin Hall States and Topological Phase Transition in Germanene [J].
Bampoulis, Pantelis ;
Castenmiller, Carolien ;
Klaassen, Dennis J. ;
van Mil, Jelle ;
Liu, Yichen ;
Liu, Cheng-Cheng ;
Yao, Yugui ;
Ezawa, Motohiko ;
Rudenko, Alexander N. ;
Zandvliet, Harold J. W. .
PHYSICAL REVIEW LETTERS, 2023, 130 (19)
[2]   Experimental Evidence of Chiral Symmetry Breaking in Kekule-Ordered Graphene [J].
Bao, Changhua ;
Zhang, Hongyun ;
Zhang, Teng ;
Wu, Xi ;
Luo, Laipeng ;
Zhou, Shaohua ;
Li, Qian ;
Hou, Yanhui ;
Yao, Wei ;
Liu, Liwei ;
Yu, Pu ;
Li, Jia ;
Duan, Wenhui ;
Yao, Hong ;
Wang, Yeliang ;
Zhou, Shuyun .
PHYSICAL REVIEW LETTERS, 2021, 126 (20)
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Magnetic behavior in zinc oxide zigzag nanoribbons [J].
Botello-Mendez, Andres R. ;
Lopez-Urias, Florentino ;
Terrones, Mauricio ;
Terrones, Humberto .
NANO LETTERS, 2008, 8 (06) :1562-1565
[5]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[6]   Spin and Charge Transport of Multiorbital Quantum Spin Hall Insulators [J].
Canonico, Luis M. ;
Rappoport, Tatiana G. ;
Muniz, R. B. .
PHYSICAL REVIEW LETTERS, 2019, 122 (19)
[7]  
Datta S., 1995, Electronic Transport in Mesoscopic Systems
[8]   Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties [J].
Davelou, Daphne ;
Kopidakis, Georgios ;
Kaxiras, Efthimios ;
Remediakis, Ioannis N. .
PHYSICAL REVIEW B, 2017, 96 (16)
[9]   Epitaxial growth of ultraflat stanene with topological band inversion [J].
Deng, Jialiang ;
Xia, Bingyu ;
Ma, Xiaochuan ;
Chen, Haoqi ;
Shan, Huan ;
Zhai, Xiaofang ;
Li, Bin ;
Zhao, Aidi ;
Xu, Yong ;
Duan, Wenhui ;
Zhang, Shou-Cheng ;
Wang, Bing ;
Hou, J. G. .
NATURE MATERIALS, 2018, 17 (12) :1081-+
[10]   Electronic structures of BC3 nanoribbons [J].
Ding, Yi ;
Wang, Yanli ;
Ni, Jun .
APPLIED PHYSICS LETTERS, 2009, 94 (07)